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Preface

Composite materials have become more popular in recent decades. From their origins until the present
day, their use has grown in sectors such as aerospace, automotive, energy and other civil engineering
applications. In fact, they constitute an interdisciplinary area, where the work of many professionals
(engineers, chemists, physicists, etc.) converges into a final product that must be inspected for main-
tenance in view of its applications. This study focuses on two particular areas, one pertaining to the
field of structural analysis, the other within the field of Structural Health Monitoring (SHM).

Finite Element Analysis (FEA) contributes very substantially to the development of composite ma-
terials, making possible the computation of plate and shell theories. Recently, Isogeometric Analysis
(IGA) has emerged as a new finite element theory that solves some of the limitations of the stan-
dard FEA. Unifying geometry definition and analysis, this recent theory serves to define and compute
complex geometries while improving computation accuracy. It stands as a very promising way to
generalize the definition and analysis of structures.

This work develops a composite shell with the novel Isogeometric Analysis (IGA) formulation, allowing
for a definition of complex geometries through the use of non uniform rational B-Splines (NURBS).

Chapter 1 (Paper:NURBS− based analysis of higher− order composite shells) implements a shell
for the most widely used ESL theories for shell structures, and verifies its implementation for some
benchmark and numerical static and dynamic problems.

However, as happens with the standard finite element formulations, the same numerical issues ac-
company IGA. Chapter 2 develops a locking-free shell with this formulation. Both shear-locking and
curvature-locking are avoided, and the obtained results present better accuracy.

The second area of focus lies in the field of SHM, and more concretely in delamination detection in
Carbon Fiber Reinforced Polymer (CFRP) plates. Therefore, numerical and experimental analyses are
performed in order to study the possibilities of delamination detection through the use of piezoelectric
(PZT) sensors and actuators.

Chapter 3 (Paper: On the Accuracy of a 4 − Node Delaminated Composite P late Element and
its Application to Damage Detection) develops a delaminated finite element for a composite plate.
Mode shape changes, frequency shifts and Frequency Response Function (FRF) changes are computed
to study the effect of delamination in the dynamic response for several delamination sizes.

Chapter 4 presents an experimental study for three orthotropic composite plates [0 90]3s, two of them
with an internal delamination, provided by Airbus (EADS-CASA, Puerto de Santa María). Analysis of
the FRF gives rise to several conclusions, some of them illustrated by means of the element developed
in Chapter 3.

In Chapter 5 (Paper: Modal Analysis of Delaminated Composite P lates using the F inite Element
Method and Damage Detection via combined Ritz/2d−Wavelet Analysis), the developed element
from Chapter 2 is used to contribute with some numerical FEM results in order to test a new damage
detection technique, from a theoretical point of view. The author limits mention of this contribution
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on the delaminated model and results, since no further work has been done. Therefore, appears as
co-author.

Finally in Chapter 6, general conclusions and lines of future work are expounded.

Important Remark :

This Doctoral Thesis is structured as a sequence of several papers. Chapters 1, 3 and 5 correspond
to already published papers, whereas Chapters 2 and 4 will be submitted soon. Therefore, the reader
may encounter some overlap of information in the different chapters. For example, the description of
Isogeometric Analysis and composite equations included in Chapters 1 and 2, or the formulation of
the delaminated element described in Chapters 3, 4 and 5. The author apologizes for such repetitions
owing to the original underlying structure of the work.
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Chapter 1

NURBS-based analysis of higher-order
composite shells

In this chapter the following paper is presented: “NURBS-based analysis of higher-order
composite shells” published in the Journal: Composite Structures in 2013, with doi:10.1016/.
compstruct.2013.04.024. The chapter presents a third order composite shell, developed with
an Isogeometric analysis formulation. The continuity advantages of NURBS make this
approach very promising, from both geometric and FEM perspectives. Some static and
dynamic results are provided and compared with some known solutions in order to proof
the efficiency of this formulation.

Abstract

Isogeometric analysis (IGA) can represent general double-curved geometries very well, as opposed to
the classic finite element method (FEM). A composite shell is introduced for a third-order shear de-
formation theory (TSDT) that achieves the C2 required continuity by the use of higher-order NURBS
through a k-refinement strategy. The TSDT is therefore an approach that can be easily implemented
in view of the IGA advantages. Numerical locking is moreover avoided by the use of higher-order
NURBS. Here, linear static and dynamic analyses are performed and compared with some known
analytical and FEM solutions to demonstrate the efficiency of Isogeometric analysis for TSDT and for
the most widely used equivalent single layer theories (ESL), that is, classical laminate theory (CLT)
and first order shear deformation theory (FSDT).

Keywords : Isogeometric; IGA; Composite; Shell; Higher-Order Theory; HOT

1.1 Introduction

The use of advanced composite materials has grown in recent decades. From the structural point
of view, their stiffness, weight, fatigue-life and strength-to-weight relation make these materials very
attractive [1]. Composites are used today by the aircraft industry as well as marine and aerospace
sectors, and they have numerous engineering applications.

Composites have general geometric forms in many of their applications, requiring complex analysis to
achieve good results. The development of the finite element method (FEM) has certainly contributed
to the development of these materials. Shell theories, developed mostly with the so-called equivalent
single layer theories (ESL), offer a good balance between the accuracy of the results from the numerical
point of view and the time involved. The most popular ones entail Love-Kirchhoff elements, with the
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1.2. Isogeometric analysis

classical laminate theory (CLT) and Reissner-Mindlin elements, with a first order shear deformation
theory (FSDT). They have been widely used, providing acceptable results. For an enhanced approach
to stresses, refined ESL theories were developed, constituting the so-called higher-order deformation
theories (HOT). Meanwhile, bridge theories between the ESL and 3D-elasticity were developed, be-
coming known as Layerwise theories, yet these often required much more computational time. A good
review of the different theories can be found in [2] for the ESL and in [3] for both ESL and Layerwise
ones.

Due to their simplicity, commercial codes mostly implement shells that approximate the mesh geom-
etry with planar elements. This implies very refined meshes to achieve a good approximation if the
curvature is relative low, conditioning the FEM mesh to ensure accuracy. Many of the shell elements
that have been developed to date are not implemented due to limitations surrounding the geometric
continuity between elements.

On the other hand computer-aided design (CAD), computer graphics (CG) and animations eventually
provided very good approximations of general complex geometries through the use of splines. Isoge-
ometric analysis (IGA) achieves the union between FEA with CAD, CG and animation. Developed
by Tom Hughes and co-workers, this method combines geometry and analysis using tools common to
both. That is, the geometric basis functions are also used as the approximation functions required for
analysis. Interested readers can find more details in [4, 5].

1.2 Isogeometric analysis

Non uniform rational B-Splines (NURBS) are a standard tool for representing curves and surfaces in
computer-aided design and computer graphics. In this section, a short description of the isogeometric
analysis concepts is briefly presented. More details are found in the fundamental works of Hughes and
co-workers [4, 5, 6, 7, 8] for isogeometric analysis; and in Piegl and Tiller [9], Rogers [10], Farin [11]
and Cohen [12] for a comprehensive review of the underlying geometric concepts and algorithms.

1.2.1 B-Splines

A B-spline is a non-interpolating, piecewise polynomial curve. It is defined by a knot vector Ξ, a set
of control points, Bi (i=1,2,...n) and a polynomial degree. The knot vector is a set of non-decreasing
real numbers representing points in the parametric space of the curve:

Ξ = {ξ1, ξ2, ..., ξn+p+1}, (1.1)

where p is the degree of the curve and n is the number of basis functions, corresponding to the Bi

control points.

B-Spline basis functions are defined recursively starting from p=0 (piecewise constant) using the
Cox-de Boor formula:

Ni,0(ξ) =

{
1 if ξ ≤ ξ < ξi+1

0 otherwise (1.2)

and for p ≥ 1:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (1.3)
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1. NURBS-based analysis of higher-order composite shells

Figure 1.1 shows an example of cubic basis functions with an open knot vector.

0

1

0 0.2 0.4 0.6 0.8 1

Figure 1.1: Cubic basis functions for open knot vector Ξ = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}.

1.2.2 B-Spline curves and surfaces

A B-Spline curve is constructed through a linear combination of B-Spline basis functions and the
control points. Figure 2.2 shows an example of a B-Spline curve with its control points.

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi (1.4)

0

0.4

0.8

0 0.25 0.5 0.75 1

Figure 1.2: B-Spline curve for open knot vector Ξ = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}.

B-Spline surface basis are computed by means of the tensor product of single univariate B-Spline basis
functions. Thus, two individual knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1},
and a set of n · m control points Bi,j (i=1,2,...n; j=1,2,...m), define the B-Spline surface:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (1.5)

1.2.3 NURBS

Non uniform rational B-Splines (NURBS) constitute an improvement upon B-splines, since they can
represent more general geometries. Constructed as a projection in Rd of a B-Spline of Rd+1, NURBS
basis can be defined. Then a space point of the B-Spline curve Bw

i (xi, yi, zi, wi) is geometrically
projected into Bi(wixi, wiyi, wizi). Similarly to B-Spline curves and surfaces, NURBS-based ones are
defined as:

C(ξ) =

∑n
i=1Ni,p(ξ)wiBi∑n
i=1Ni,p(ξ)wi

(1.6)
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1.3. Shell formulation

S(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,jBi,j∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(1.7)

1.2.4 Mesh refinement

NURBS-based refinements can be done by knot insertion (h refinement) or order increase (p refine-
ment) [5]. Particularly the k-refinement combines order increase in the first place and knot insertion
of multiplicity one in the second place. This refinement guarantees Cp−1 continuity through the entire
domain. Figure 2.3 shows an example of a cylindrical surface built with NURBS and the element, and
control mesh before and after a k-refinement.

Figure 1.3: NURBS-based cylindrical surface for Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 1, 1}. Element and
control mesh before and after a k-refinement.

1.3 Shell formulation

In this section the laminate shell theory is briefly exposed. First, a description at the ply level is
introduced; then, the shell kinematics are described for the adopted ESL theories in order to build
the equations of the laminate.

1.3.1 Ply description

ESL layer theories assume that each composite ply behaves as a case of a plane–stress problem,
neglecting the transverse normal strain (E33=0). The stress-strain relation for an orthotropic ply can
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1. NURBS-based analysis of higher-order composite shells

be expressed with respect the ply/shell selected orthonormal axes as:

Q11 =Q11cos
4θ + 2(Q12 + 2Q66)sin2θcos2θ +Q22sin

4θ

Q12 =(Q11 +Q22 − 4Q66)sin2θcos2θ +Q12(sin4θ + cos4θ)

Q22 =Q11sin
4θ + (2Q12 + 2Q26)sin2θcos2θ +Q22cos

4θ

Q16 =(Q11 −Q12 − 2Q66)sinθcos3θ + (Q12 −Q22 + 2Q66)sin3θcosθ

Q26 =(Q11 −Q12 − 2Q66)sin3θcosθ + (Q12 −Q22 + 2Q66)sinθcos3θ

Q66 =(Q11 +Q22 − 2Q12 − 2Q66)sin2θ + cos2θ +Q66(sin4θ + cos4θ)

Q44 =Q44cos
2θ +Q55sin

2θ

Q45 =(Q55 −Q44)cosθsinθ

Q55 =Q55cos
2θ +Q44sin

2θ (1.8)

where θ is the angle between the fiber and the first ply/shell axis, plotted in Fig. 2.4.

2
x̂2

1

x̂1

θ

Figure 1.4: Orientation of axes at ply level.

The matrix Qr, where r denotes the corresponding ply, is also called the reduced stiffness ply matrix,
which can be rewritten in terms of normal and transverse ply stiffness as:

Qr =

[
Qr1 0
0 Qr2

]
; (1.9)

where:

Qr1 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 ; Qr2 =

[
Q44 Q45

Q45 Q55

]
(1.10)
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1.3. Shell formulation

1.3.2 Laminate description

The laminate equations will be deduced by considering the corresponding ESL theory. Although CLT,
FSDT and TSDT are implemented in the present shell, only a description of the TSDT is exposed,
since it is more general and can lead to the other ones, assuming certain well known simplifications.

The undeformed shell geometry can be described by:

X(ξ, η, ζ) = X(ξ, η) + ζA3 (1.11)

and the deformed one can be described by:

x(ξ, η, ζ) = X(ξ, η, ζ) + u(ξ, η, ζ) (1.12)

where A3 is the unitary normal vector normal to the undeformed mid-surface and u(ξ, η, ζ) are the
spatial displacements. Figure 2.5 shows the initial and the deformed configuration of the shell (denoted
with ’); ξ and η are coordinates; ζ is the normal coordinate to the midsurface; e1 and e2 comprise
the selected orthonormal local base. The TSDT transverse section deformed is also plotted, where ϕ
is the CLT rotation and φ is the total rotation, which includes the shear deformation proper of the
FSDT. Points T and B denote the top and bottom ones of the laminate.

T

P

M

B
B’

T’

P’

M’

X

u

X

M

M’
1

1

2
2e

e e’

e’

u

ϕ
φ

Figure 1.5: Shell description for TSDT.
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1. NURBS-based analysis of higher-order composite shells

Third order theories assume a cubic deformation for the transverse displacements, so the kinematics
of the deformation for a linear regime can be described by:

u(ξ, η, ζ) = u(ξ, η) + ζ(φ2e1 − φ1e2) + ζ3(ψ2e1 − ψ1e2) (1.13)

where φ1 and φ2 are the rotations with respect the considered local base and ψ1 and ψ2 are new
degrees of freedom.

The last term of Equation (2.24) represents the cubic displacements, inherit to the TSDT. ψ1 and ψ2

are in principle unknowns, but can be expressed in terms of the other d.o.f. by the assumption of
certain conditions. Introduced by Reddy, firstly for plates in [13, 14] and later for shells in [15, 16], it
can be assumed that the section is free of tangential stress at the top and the bottom of the laminate
(τ13(±h/2) = τ23(±h/2) = 0). These conditions allow us to express ψ1 and ψ2 in terms of the rest of
the d.o.f., the TSDT thus having the same number of d.o.f. as the FSDT, and expressed as:

ψ1 = − 4

3h2
(φ1 + w0,x̂1

); ψ2 = − 4

3h2
(φ2 + w0,x̂2

) (1.14)

where x̂i are local orthonormal coordinates and h is the laminate total thickness.

The strain tensor is obtained by means of the well known formula:

E =
1

2
(Gij − gij) (1.15)

By integration through the thickness, the laminate strain-stress relationships can be obtained and
then expressed in the local system as:

N0

M0

P0

 =

A B E
B D F
E F H

ε0
0

ε1
0

ε3
0

 ;

[
Q0

R0

]
=

[
As Ds

Ds Fs

] [
γ0

0

γ1
0

]
(1.16)

where N0, M0, P0, Q0 and R0 are the resultant forces and moments, and εi0 and γi0 are the in–plane
strains;

(A,B,D,E,F,H) =

n∑
r=1

∫ zr

−zr
Qr1(1,z,z2,z3,z4,z6)dz (1.17)

(As,Ds,Fs) =

n∑
r=1

∫ zr

−zr
Qr2(1, z2, z4) dz (1.18)

Equations (2.26)-(2.27) represent the constitutive matrices of the laminate for the TSDT.
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1.3. Shell formulation

1.3.3 FEM implementation

In order to obtain the stiffness and mass matrices, the principle of virtual work is applied:

δW = δWint + δWext = 0 (1.19)

with:

δWint =

∫
Ω

[S : δε+ ρ dm ü] dΩ

δWext =

∫
Ω

f · udΩ

(1.20)

From the internal work, and by interpolation of the displacements, the expressions of both matrices
are obtained. Hence the stiffness matrix is:

K =

∫
Ω

[
BT

MABM + BT
MBBB + BT

BBBM + BT
BDBB + BT

MEBB∗ + BT
B∗EBM + BT

BFBB∗+

BT
B∗FBB + BT

B∗HBB∗ + BT
SAsBS + BT

S∗BsBS + BT
SBsBS∗ + BT

S∗DsBS∗
]

dΩ (1.21)

where the subscript M refers to the membrane behaviour; B to the linear term of the transverse section
deformation; B∗ to the cubic term; S the shear deformation derived from the linear term and S∗ the
shear deformation derived from the cubic term.

The mass matrix, including its translational, rotational and the additional components derived from
the third order theory, is as follows:

M =

∫
Ω

ρ[NT
u Nu + NT

v Nv + NT
wNw + z2(NT

φ1Nφ1 + NT
φ2Nφ2) + z4(NT

φ1Nψ1 + NT
ψ1Nφ1)+

z4(NT
φ2Nψ2 + NT

ψ2Nφ2) + z6(NT
ψ1Nψ1 + NT

ψ2Nψ2)] dΩ (1.22)

1.3.4 IGA aspects

As explained before, a shell for CLT, FSDT and TSDT is implemented. Regarding the continuity
advantages of NURBS, CLT is implemented with a rotation–free formulation, since it requires C1

continuity (see [17, 18]). For the TSDT, the C2 required continuity is also guaranteed using at least
cubic basis through a k-refinement strategy. TSDT has the same number of d.o.f. as the FSDT and
because of this, the authors wish to underline the TSDT as a better approach, since it does not require
any shear correction factor and because shear strains at the ply level can be computed directly. It
can be easily implemented with IGA as opposed to the classical FEM, not commonly used due to
its implementation disadvantages. Higher-order NURBS are used here, since are numerically quite
efficient, in addition to the mentioned continuity requirements and the fact that are almost insensitive
to the numerical locking phenomena.

10



1. NURBS-based analysis of higher-order composite shells

1.4 Numerical results

In this section some benchmark static and dynamic problems are compared with the IGA shell for the
introduced TSDT and the widely used ESL theories CLT and FSDT. For all the FSDT problems, a
shear correction factor K=5/6 was used; TSDT do not require any shear correction factor.

1.4.1 Simply supported plate

A simply supported composite rectangular plate of dimension a x b was studied. The plate was as-
sumed to be square (a=b=1). The IGA model can be seen in Fig. 2.6. A 8 x 8 mesh with fourth order
NURBS basis was used. Two different materials are defined with the following ply properties:

Material 1
E1=25E2, G12=G13=0.5E2, G23=0.2E2, ν12=ν13=0.25.

Material 2
E1=40E2, G12=G13=0.6E2, G23=0.5E2, ν12=ν13=0.25.

Two different sets of boundary conditions are also defined:

SS − 1:

u0(x, 0) = u0(x, b) = θx(x, 0) = θx(x, b) = 0

v0(0, y) = v0(a, y) = θy(0, y) = θy(a, y) = 0

w0(x, 0) = w0(x, b) = w0(0, y) = w0(a, y) = 0 (1.23)

Nxx(0, y) = Nxx(a, y) = Nyy(x, 0) = Nyy(x, b) = 0

Mxx(0, y) = Mxx(a, y) = Myy(x, 0) = Myy(x, b) = 0 (1.24)

SS − 2:

u0(0, y) = u0(a, y) = θx(x, 0) = θx(x, b) = 0

v0(x, 0) = v0(x, b) = θy(0, y) = θy(a, y) = 0

w0(x, 0) = w0(x, b) = w0(0, y) = w0(a, y) = 0 (1.25)

Nxy(0, y) = Nxy(a, y) = Nxy(x, 0) = Nxy(x, b) = 0

Mxx(0, y) = Mxx(a, y) = Myy(x, 0) = Myy(x, b) = 0 (1.26)

where M = M0 − c1 · P0, being c1 = 4/3h2.

11



1.4. Numerical results

Figure 1.6: IGA Plate model. Element mesh and control points.

For all the static analyses the following normalization was applied:

ω = ω0(
a

2
,
b

2
)(
E2h

3

a4q0
) ; σxx = σxx(

a

2
,
b

2
,
h

2
)(
h2

b2q0
)

σyy = σyy(
a

2
,
b

2
,
h

4
)(
h2

b2q0
) ; σxy = σxy(0, 0,

h

2
)(
h2

b2q0
)

τxz = τxz(
a

2
, 0, 0)(

h

bq0
) ; τyz = τyz(0,

b

2
, 0)(

h

bq0
) (1.27)

where a and b are the plate dimensions; h is the laminate thickness and q0 is the maximum value of
the applied load. For the case of a sinusoidal load the spatial distribution is the following:

q(x, y) = q0 sin(
πx

a
) sin(

πy

b
) (1.28)

Static analysis of symmetric cross-ply laminate
[0 90 90 0]

The defined simply supported plate with Material 1 and boundary conditions SS − 1 for a cross-ply
laminate of stacking sequence [0 90 90 0] subjected to a sinusoidal load (1.28) was analized. Table 1.1
shows the results obtained with IGA and the analytical results (normalized displacements and stresses
are presented) for CLT, FSDT and TSDT, for different thickness values. The 3D elasticity solution
obtained in [19] is also indicated (ELS). IGA results prove exactly the same as the analytical solutions.
From relatively thick plates to thin ones (a/h=100) all the solutions are exact, that is, fourth order
NURBS are accurate for thin plates even with a moderate mesh.

12



1. NURBS-based analysis of higher-order composite shells

a/h w σxx σyy σxy τxz τyz
IGA TSDT 1.8937 0.665 0.6322 0.044 0.2064 0.2389
IGA FSDT 1.7095 0.4059 0.5764 0.0308 0.1398 0.1962

4
ELS [19] 1.954 0.72 0.666 0.0467 0.219 0.292

TSDT [20] 1.8937 0.6651 0.6322 0.044 0.2064 0.2389
FSDT [21] 1.71 0.4059 0.5765 0.0308 0.1398 0.1962
IGA TSDT 0.7147 0.5456 0.3888 0.0268 0.264 0.1531
IGA FSDT 0.6627 0.4989 0.3614 0.0241 0.1659 0.1292

10
ELS [19] 0.743 0.559 0.401 0.0275 0.301 0.196

TSDT [20] 0.7147 0.5456 0.3888 0.0268 0.264 0.1531
FSDT [21] 0.6628 0.4989 0.3615 0.0241 0.1667 0.13
IGA TSDT 0.506 0.5393 0.3043 0.0228 0.2825 0.1234
IGA FSDT 0.4912 0.5273 0.2957 0.0221 0.1748 0.1087

20
ELS [19] 0.517 0.543 0.308 0.023 0.328 0.156

TSDT [20] 0.506 0.5393 0.3043 0.0228 0.2825 0.123
FSDT [21] 0.4912 0.5273 0.2957 0.0221 0.1749 0.109
IGA TSDT 0.4343 0.5387 0.2708 0.0213 0.2893 0.1101
IGA FSDT 0.4337 0.5382 0.2705 0.0213 0.1775 0.0993

100
ELS [19] 0.438 0.539 0.276 0.0216 0.337 0.141

TSDT [20] 0.4343 0.5387 0.2708 0.0213 0.2897 0.112
FSDT [21] 0.4337 0.5382 0.271 0.0213 0.178 0.101
CLT [3] 0.4312 0.5386 0.2692 0.0213

∞
IGA CLT 0.431 0.5386 0.2693 0.0213

Table 1.1: IGA and analytical results for a [0 90 90 0] square plate for CLT, FSDT and TSDT subjected to
a sinusoidal load

Static analysis of antisymmetric cross-ply laminate
[0 90]n and angle-ply laminate [45 -45]n

In this case we studied an antisymmetric cross-ply laminate of stacking sequence [0 90]n withMaterial 1
and boundary conditions SS − 1 and an angle-ply laminate of stacking sequence [45 -45]n with
Material 2 and boundary conditions SS − 2. Tables 1.2 and 1.3 show the results obtained with
IGA and the analytical results for CLT, FSDT and TSDT for different thickness values. Numerical
values are presented for n=1, 2, 3 whereas analytical values are presented for n=1, 3. In this case
only the normalized center displacement was studied. As can be observed, the numerical results are
the same as the analytical ones.

a/h n 1 2 3 1 3
4 IGA FSDT 2.1492 1.5921 1.5473 FSDT [3] 2.1492 1.5473

IGA TSDT 1.9985 1.6093 1.5411 TSDT [3] 1.9985 1.5411
10 IGA FSDT 1.2373 0.6802 0.6354 FSDT [3] 1.2373 0.6354

IGA TSDT 1.2161 0.6865 0.6382 TSDT [3] 1.2161 0.6382
20 IGA FSDT 1.107 0.55 0.5517 FSDT [3] 1.107 0.5052

IGA TSDT 1.1018 0.5517 0.506 TSDT [3] 1.1018 0.506
100 IGA FSDT 1.0653 0.5083 0.4635 FSDT [3] 1.0653 0.4635

IGA TSDT 1.0651 0.5083 0.4635 TSDT [3] 1.0651 0.4635
∞ IGA CLT 1.0636 0.5065 0.4617 CLT [3] 1.0636 0.4618

Table 1.2: Normalized displacements for [0 90]n for CLT, FSDT and TSDT subjected to a sinusoidal load
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1.4. Numerical results

a/h n 1 2 3 1 3
4 IGA FSDT 1.1576 0.8715 0.8531 FSDT [3] 1.1576 0.8531

IGA TSDT 1.0203 0.8747 0.8375 TSDT [3] 1.0203 0.8375
10 IGA FSDT 0.5773 0.2912 0.2728 FSDT [3] 0.5773 0.2728

IGA TSDT 0.5581 0.2956 0.2745 TSDT [3] 0.5581 0.2745
20 IGA FSDT 0.4944 0.2083 0.1899 FSDT [3] 0.4944 0.1899

IGA TSDT 0.4897 0.2095 0.1905 TSDT [3] 0.4897 0.1905
100 IGA FSDT 0.4678 0.1818 0.1633 FSDT [3] 0.4678 0.1633

IGA TSDT 0.4676 0.1818 0.1634 TSDT [3] 0.4676 0.1634
∞ IGA CLT 0.4667 0.1806 0.1622 CLT [3] 0.4667 0.1622

Table 1.3: Normalized displacements for [45 -45]n for CLT, FSDT and TSDT subjected to a sinusoidal load

Eigenfrequencies of symmetric cross-ply laminate
[0 90 0]

In this case a [0 90 0] cross-ply laminate with Material 1 and boundary conditions SS − 1 was
studied. Several normalized eigenfrequencies were computed and compared with their respective
analytical results, as presented in Table 1.4 for different thickness values. As it can be seen, numerical
and analytical results are the same for CLT and FSDT. Additionally, numerical values for TSDT are
presented.

a/h CLT [3] FSDT [3] IGA CLT IGA FSDT IGA TSDT
Mode 1 15.228 12.163 15.228 12.163 11.797
Mode 2 22.877 18.729 22.877 18.729 18.517
Mode 3 40.299 30.932 40.299 30.932 29.369

10 Mode 4 56.885 30.991 56.885 30.991 30.989
Mode 5 60.911 34.434 60.911 34.434 33.023
Mode 6 66.754 45.923 66.755 45.923 46.399
Mode 7 71.522 42.585 71.522 42.582 41.66
Mode 1 15.228 15.183 15.228 15.183 15.175
Mode 2 22.877 22.817 22.877 22.817 22.81
Mode 3 40.299 40.153 40.299 40.153 40.149

100 Mode 4 56.885 56.21 56.885 56.21 56.076
Mode 5 60.911 60.211 60.911 60.211 60.076
Mode 6 66.754 66.364 66.755 66.364 66.367
Mode 7 71.522 70.764 71.522 70.764 70.639

Table 1.4: Normalized frequency of [0 90 0] for CLT, FSDT and TSDT.

Frequencies were normalized by the following expression:

ω = ωi(a
2/h)

√
ρ/E2 (1.29)

where ωi is the considered frequency, ρ the density and a the edge length.

Eigenfrequencies of antisymmetric angle-ply laminate [45 -45]n

Finally, a [45 -45]n angle-ply laminate with Material 2 and boundary conditions SS − 2 was studied.
Several normalized eigenfrequencies were computed and compared with their respective analytical
results. They are presented in Table 1.5 for CLT, FSDT and TSDT for different thickness values.
Numerical values for n=1, 2, 3 are given whereas analytical values are presented for n=1, 3. Numerical
and analytical results are the same.
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1. NURBS-based analysis of higher-order composite shells

a/h n 1 2 3 1 3
4 IGA FSDT 9.759 10.684 10.895 FSDT [3] 9.161 10.805

IGA TSDT 13.044 10.651 19.025 TSDT [3] 9.759 10.895
10 IGA FSDT 13.263 18.463 19.025 FSDT [3] 13.044 19.025

IGA TSDT 14.179 18.322 22.913 TSDT [3] 13.263 19.025
20 IGA FSDT 14.246 21.872 22.877 FSDT [3] 14.179 22.913

IGA TSDT 14.618 21.806 24.741 TSDT [3] 14.246 22.877
100 IGA FSDT 14.621 23.454 24.739 FSDT [3] 14.618 24.741

IGA TSDT 14.621 23.451 24.739 TSDT [3] 14.621 24.739

Table 1.5: Normalized first frequency for [45 -45]n for FSDT and TSDT.

1.4.2 Simply supported cylinder

In this subchapter, a simply supported cylinder of radius R and edges of length a (the 4 edges) with
SS − 1 boundary conditions was studied. Material 1 was used for cross-ply laminates of stacking
sequences [0 90], [0 90 0] and [0 90 90 0]. The IGA model can be seen in Fig. 2.7. A 8 x 8 mesh
with fourth order NURBS basis was used. The first normalized eigenmode (3.11) was computed for
different values of the radius and two different thicknesses and plotted in Fig. 2.8. Table 1.6 shows the
results obtained with IGA and the analytical results for FSDT and TSDT. As seen, numerical and
analytical solutions are in good agreement. For the case of R = 1030, the results are the same as the
ones presented before (see Table 1.4). The analytical values for the TSDT presented in [16] assume
that 1/R=0 in the shear strains for a Naghdi-Shell formulation. This assumption was considered for
the IGA of the TSDT solutions. Results for both theories are in good agreement with the numerical
results for the selected mesh.

x̂2
x̂1

Figure 1.7: IGA simply supported cylinder model. Element mesh and control points.
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1.4. Numerical results

R/a [0 90] [0 90 0] [0 90 90 0]
a/h 100 10 100 10 100 10

IGA FSDT 16.669 8.913 20.333 12.209 20.362 12.268
IGA TSDT 16.687 9.026 20.331 11.851 20.360 11.831

5
FSDT [16] 16.668 8.908 20.332 12.207 20.361 12.267
TSDT [16] 16.69 9.023 20.33 11.85 20.36 11.83
IGA FSDT 11.831 8.89 16.625 12.174 16.634 12.237
IGA TSDT 11.838 8.981 16.619 11.809 16.631 11.790

10
FSDT [16] 11.831 8.888 16.625 12.173 16.634 12.236
TSDT [16] 11.84 8.979 16.62 11.8 16.63 11.79
IGA FSDT 10.265 8.891 15.557 12.166 15.559 12.23
IGA TSDT 10.268 8.971 15.548 11.8 15.549 11.784

20
FSDT [16] 10.265 8.89 15.556 12.166 15.559 12.228
TSDT [16] 10.27 8.972 15.55 11.79 15.55 11.78
IGA FSDT 9.711 8.898 15.198 12.163 15.199 12.227
IGA TSDT 9.712 8.978 15.19 11.797 15.188 11.784

100
FSDT [16] 9.711 8.897 15.198 12.163 15.199 12.227
TSDT [16] 9.712 8.975 15.19 11.79 15.19 11.78
IGA FSDT 9.687 8.9 15.183 12.163 15.184 12.227
IGA TSDT 9.688 8.98 15.175 11.797 15.173 11.784

Plate
R=1030 FSDT [16] 9.687 8.9 15.183 12.162 15.184 12.226

TSDT [16] 9.688 8.976 15.17 11.79 15.17 11.78

Table 1.6: Normalized first frequency for [90 0], [0 90 0] and [0 90 90 0] simply supported cylinder for FSDT
and TSDT.

0

0.5

1.0

Figure 1.8: Mode 1 of simply supported cylinder.

1.4.3 Clamped cylinder

Static analysis of isotropic clamped cylinder

A cylinder of radius R and edge length L totally clamped on its 4 edges was studied for an isotropic
material subjected to a uniform transverse load. The IGA model can be seen in Fig. 2.9, for two
considered meshes. It is assumed that R = 100 in, L = 20 in, h = 0.125 in, 2α = 0.2 rad, which is
the total angle that defines the circular edges (a = 2αR) and q = 0.04 psi. The material used has the
following ply properties:

Material 3
E=0.45·106 psi, ν=0.30.
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1. NURBS-based analysis of higher-order composite shells

The clamped boundary conditions are defined as:

CC − 1:

u0(0, y) = u0(a, y) = u0(x, 0) = u0(x, b) = 0

v0(0, y) = v0(a, y) = v0(x, 0) = v0(x, b) = 0

θx(0, y) = θx(a, y) = θx(x, 0) = θx(x, b) = 0

θy(0, y) = θy(a, y) = θy(x, 0) = θy(x, b) = 0

w0(0, y) = w0(a, y) = w0(x, 0) = w0(x, b) = 0 (1.30)

This is a relatively thin shell, so all the solutions should give the same results. Solutions for CLT,
FSDT and TSDT are quite similar for this thickness, since the shear deformation is negligible. Table
1.7 shows the results obtained with IGA for 8 x 8 and 16 x 16 element meshes, for NURBS basis orders
4-th, 5-th and 6-th. The results are compared with other FEM results obtained with an educational
version of the Software [22] and the one in [3]. As expected, a refined mesh should be used for fourth
order NURBS and shear deformation theories. For CLT no additional refinement is required, since this
formulation does not provide any locking; whereas for shear deformation cases, the locking phenomena
tends to vanish as the NURBS order increases. The deformation is plotted in Fig. 2.10.

Figure 1.9: IGA clamped cylinder model. Meshes for 8x8 and 16x16 elements.

NURBS order Elements CLT FSDT TSDT
4th IGA 8x8 1.1352 1.1327 1.133

IGA 16x16 1.1351 1.1348 1.1345
5th IGA 8x8 1.1351 1.1345 1.1338

IGA 16x16 1.1351 1.1348 1.1344
6th IGA 8x8 1.1351 1.1348 1.1354

IGA 16x16 1.1351 1.1348 1.1343
- FEM 16x16 [3] 1.1349 - -
- FEM 64x64 [22] 1.1354 1.1351 -

Table 1.7: Maximum displacement (in) at isotropic clamped cylinder subjected to a uniform transverse load.

Static analysis of complete clamped cylinder

A cylinder of radius R and edge length L totally clamped was studied for a [0] cross-ply laminate,
with CC − 1 boundary conditions at x̂1 = 0 and x̂1 = L. The IGA model can be seen in Fig. 1.11. A
32 x 8 mesh with fourth order NURBS basis was used. It was assumed that R/L = 1, R/h = 20 and
h = 1 in. The material used has the following ply properties:
Material 4

E1=7.5·106 psi, E2=2.0·106 psi, G12=1.25·106 psi,
G13=G23=0.625·106 psi, ν12=ν13=0.25.
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0

0.5

1.135

Figure 1.10: Deformation (in) of clamped cylinder subjected to a uniform transverse load.

A uniform internal pressure of 6.41/π ksi was applied. The deformation was computed and plotted
in Fig. 1.12. Table 1.8 shows the results obtained with IGA and other FEM results. The CLT results
are in good agreement for FEM and IGA. Additionally, solutions for FSDT and TSDT are presented.

x̂1

x̂2

Figure 1.11: IGA clamped complete cylinder model. Element mesh and control points.

CLT[23] FSDT[3] IGA CLT IGA FSDT IGA TSDT
[0] 0.3666 0.3754 0.3671 0.3748 0.3742

Table 1.8: Maximum displacement (in) for [0] clamped cylinder with internal pressure for CLT, FSDT and
TSDT.
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0

0.2

0.37

Figure 1.12: Deformation (in) of complete cylinder by internal pressure.

Eigenmode analysis of clamped complete cylinder

Finally, another cylinder of radius R and edge length L totally clamped was studied for [0 90] and [90
0] cross-ply laminates, with CC − 1 boundary conditions at x̂1 = 0 and x̂1 = L. The IGA model can
be seen in Fig. 1.11. A 32 x 8 mesh with fourth order NURBS basis was used. It was assumed that
R/L = 1, R/h = 60 and h = 1 in. The material used has the following ply properties:

Material 5
E1=10E2, G12=G13=0.6E2, G23=0.5E2, ν12=ν13=0.25.

The first normalized eigenmode (3.12) was computed and plotted in Fig. 2.11. Table 1.9 shows the
results obtained with IGA and the analytical results for FSDT and TSDT. Superindex 1 refers to
the general solution while superindex 2 is for the case in which 1/R = 0 in the shear strains, for a
Naghdi-Shell formulation [3]. Numerical results are in good agreement with the analytical ones for
the selected mesh.

ω = ωi(L
2/10h)

√
ρ/E2 (1.31)

where ωi is the considered frequency and ρ the density and L the cylinder length.

FSDT[3] IGA FSDT1 IGA FSDT2 IGA TSDT1 IGA TSDT2

[0 90] 3.266 3.248 3.268 3.249 3.264
[90 0] 3.242 3.208 3.244 3.209 3.237

Table 1.9: Normalized first frequency for [0 90] and [90 0] clamped complete cylinder for FSDT and TSDT.
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-1.0

0

1.0

Figure 1.13: Mode 1 of clamped complete cylinder.

1.5 Conclusions

In this contribution, a composite shell is implemented with an IGA NURBS-based formulation. The
most widely ESL composite theories are analized, particularly the TSDT shell, introduced in this
paper. Higher-order NURBS ensure the continuity requirements inherent to the different ESL theories,
and serve to avoid numerical locking. Numerical and analytical results were compared for a set of
benchmark and FEM solutions to corroborate the efficiency of IGA, giving the same results for relative
small meshes. The results underline IGA in contrast to the classic FEM as a very promising approach
for double-curved composite shells, especially the TSDT, which can be easily implemented and is more
accurate than the FSDT.
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Chapter 2

An Isogeometric higher-order locking-free
shell

In this chapter an improvement in terms of numerical accuracy is performed for a TSDT
shell. The well known locking phenomenon is avoided with the use of a locking-free theory
in terms of shear-locking, in combination with a numerical method (projection technique) to
avoid the curvature-locking. The results presented in this chapter compare this strategy with
the standard IGA formulation developed in the previous chapter, being this new one more
accurate, specially for lower order NURBS. The methodology is also valid for composites,
but for the sake of brevity, only isotropic cases are presented. In a future paper these results
will be extended to composite cases, similar to those presented in Chapter 1.

Abstract

Isogeometric analysis (IGA) represents an important improvement for shell analysis due to its advan-
tage to represent complex geometries. However, IGA formulation is sensible of locking effects, as well
as happens with standard finite element analysis (FEA). In this work a locking-free third order shear
deformation theory (TSDT) shell is proposed. Particularly, shear-locking is avoided through a discrete
hierarchic vector formulation, whereas the curvature-locking is avoided with a projection technique.
Linear static and dynamic analyses are performed and compared with some known analytical and
FEM solutions to demonstrate the efficiency of isogeometric analysis for the TSDT and for the most
widely used equivalent single layer theories (ESL), that is, the classical laminate theory (CLT) and
the first order shear deformation theory (FSDT).

Keywords : Isogeometric Analysis; Shell; Higher-Order Theory; Locking-free; Hierarchic difference
vector; Projection methods

2.1 Introduction

Shell structures are present in many engineering applications because of its geometric characteristics.
Particularly, in the area of composite materials they have become more popular in the recent decades
due to their properties (relationship strength-stiffness, weight, etc.).

The development of the finite element method (FEM) made possible solving plate and shell theo-
ries, required to design composits. Particularly, shell theories, developed mostly with the so-called
equivalent single layer theories (ESL), offer a good balance between the accuracy of the results from
the numerical point of view and the time involved. The most popular ones entail Love-Kirchhoff
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elements, with the classical laminate theory (CLT) and Reissner-Mindlin elements, with a first order
shear deformation theory (FSDT). They have been widely used, providing acceptable results. For
an enhanced approach to stresses, refined ESL theories were developed, constituting the so-called
higher-order deformation theories (HOT). Interested reader can found more information about these
materials in [1] and [3] and more details on ESL theories on [2] and [3].

On the other hand computer-aided design (CAD), computer graphics (CG) and animations, eventually
provided very good approximations of general complex geometries through the use of splines. Isoge-
ometric analysis (IGA) achieves the union between FEA with CAD, CG and animation. Developed
by Tom Hughes and co-workers, this method combines geometry and analysis using tools common to
both. That is, the geometric basis functions are also used as the approximation functions required for
analysis. Interested readers can find more details in [4, 5].

The author presented in [24] a TSDT shell, where locking is avoided through the use of higher-order
NURBS. However, as happens with standard FEA, the locking phenomenon has to be considered,
specially for lower order NURBS. All the classical techniques used to avoid this problem, can be
applied for IGA. Particularly, the Ref. [25] introduced the hierarchic difference vector for FSDT shells
to avoid shear-locking. In [26], the authors also used this concept combined with DSG and projection
techniques to avoid the curvature-locking for a FSDT.

2.2 Isogeometric analysis

Non uniform rational B-Splines (NURBS) are a standard tool for representing curves and surfaces in
computer-aided design and computer graphics. In this section, a short description of the isogeometric
analysis concepts is briefly presented. More details are found in the fundamental works of Hughes and
co-workers [4, 5, 6, 7, 8] for isogeometric analysis; and in Piegl and Tiller [9], Rogers [10], Farin [11]
and Cohen [12] for a comprehensive review of the underlying geometric concepts and algorithms.

2.2.1 B-Splines

A B-spline is a non-interpolating, piecewise polynomial curve. It is defined by a knot vector Ξ, a set
of control points, Bi (i=1,2,...n) and a polynomial degree. The knot vector is a set of non-decreasing
real numbers representing points in the parametric space of the curve:

Ξ = {ξ1, ξ2, ..., ξn+p+1}, (2.1)

where p is the degree of the curve and n is the number of basis functions, corresponding to the Bi

control points.

B-Spline basis functions are defined recursively starting from p=0 (piecewise constant) using the
Cox-de Boor formula:

Ni,0(ξ) =

{
1 if ξ ≤ ξ < ξi+1

0 otherwise (2.2)

and for p ≥ 1:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.3)

Figure 2.1 shows an example of cubic basis functions with an open knot vector.
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2. An Isogeometric higher-order locking-free shell

0

1

0 0.2 0.4 0.6 0.8 1

Figure 2.1: Cubic basis functions for open knot vector Ξ = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}.

2.2.2 B-Spline curves and surfaces

A B-Spline curve is constructed through a linear combination of B-Spline basis functions and the
control points. Figure 2.2 shows an example of a B-Spline curve with its control points.

C(ξ) =

n∑
i=1

Ni,p(ξ)Bi (2.4)

0

0.4

0.8

0 0.25 0.5 0.75 1

Figure 2.2: B-Spline curve for open knot vector Ξ = {0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1}.

B-Spline surface basis are computed by means of the tensor product of single univariate B-Spline basis
functions. Thus, two individual knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1},
and a set of n · m control points Bi,j (i=1,2,...n; j=1,2,...m), define the B-Spline surface:

S(ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.5)

2.2.3 NURBS

Non uniform rational B-Splines (NURBS) constitute an improvement upon B-splines, since they can
represent more general geometries. Constructed as a projection in Rd of a B-Spline of Rd+1, NURBS
basis can be defined. Then a space point of the B-Spline curve Bw

i (xi, yi, zi, wi) is geometrically
projected into Bi(wixi, wiyi, wizi). Similarly to B-Spline curves and surfaces, NURBS-based ones are
defined as:

C(ξ) =

∑n
i=1Ni,p(ξ)wiBi∑n
i=1Ni,p(ξ)wi

(2.6)

S(ξ, η) =

∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,jBi,j∑n

i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(2.7)
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2.3. Shell formulation

2.2.4 Mesh refinement

NURBS-based refinements can be done by knot insertion (h refinement) or order increase (p refine-
ment) [5]. Particularly the k-refinement combines order increase in the first place and knot insertion
of multiplicity one in the second place. This refinement guarantees Cp−1 continuity through the entire
domain. Figure 2.3 shows an example of a cylindrical surface built with NURBS and the element, and
control mesh before and after a k-refinement.

Figure 2.3: NURBS-based cylindrical surface for Ξ = {0, 0, 0, 1, 1, 1} and H = {0, 0, 1, 1}. Element and
control mesh before and after a k-refinement.

2.3 Shell formulation

In this section the laminate shell theory is briefly exposed. First, a description at the ply level is
introduced; then, the shell kinematics are described for the adopted ESL theories in order to build
the equations of the laminate.

2.3.1 Ply description

ESL layer theories assume that each composite ply behaves as a case of a plane–stress problem,
neglecting the transverse normal strain (ε33=0). The stress-strain relation for an orthotropic ply can
be expressed with respect the ply/shell selected orthonormal axes as:

Q11 =Q11cos
4θ + 2(Q12 + 2Q66)sin2θcos2θ +Q22sin

4θ

Q12 =(Q11 +Q22 − 4Q66)sin2θcos2θ +Q12(sin4θ + cos4θ)

Q22 =Q11sin
4θ + (2Q12 + 2Q26)sin2θcos2θ +Q22cos

4θ

Q16 =(Q11 −Q12 − 2Q66)sinθcos3θ + (Q12 −Q22 + 2Q66)sin3θcosθ

Q26 =(Q11 −Q12 − 2Q66)sin3θcosθ + (Q12 −Q22 + 2Q66)sinθcos3θ

Q66 =(Q11 +Q22 − 2Q12 − 2Q66)sin2θ + cos2θ +Q66(sin4θ + cos4θ)

Q44 =Q44cos
2θ +Q55sin

2θ

Q45 =(Q55 −Q44)cosθsinθ

Q55 =Q55cos
2θ +Q44sin

2θ (2.8)
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2. An Isogeometric higher-order locking-free shell

where θ is the angle between the fiber and the first ply/shell axis, plotted in Fig. 2.4.

2
x̂2

1

x̂1

θ

Figure 2.4: Orientation of axes at ply level.

The matrix Qr, where r denotes the corresponding ply, is also called the reduced stiffness ply matrix,
which can be rewritten in terms of normal and transverse ply stiffness as:

Qr =

[
Qr1 0
0 Qr2

]
; (2.9)

where:

Qr1 =

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

 ; Qr2 =

[
Q44 Q45

Q45 Q55

]
(2.10)

2.3.2 Laminate description

The laminate equations will be deduced by considering the corresponding ESL theory. Although CLT,
FSDT and TSDT are implemented in the present shell, only a description of the TSDT is exposed,
since it is more general and can lead to the other ones by simplification of the TSDT.

The undeformed shell geometry can be described by:

X(ξ, η, ζ) = X(ξ, η) + ζA3 = X(ξ, η) + N (2.11)

and the deformed one can be described by:

x(ξ, η, ζ) = X(ξ, η, ζ) + u(ξ, η, ζ) (2.12)

being:
x(ξ, η, ζ) = x(ξ, η) + n (2.13)

where X and x represent the mid-surface positions for the reference and deformed configurations;
{Aξ,Aη} and {aξ,aη} are the convected unitary vectors for the reference and deformed configurations
of the manifold; A3 and a3 are the unitary vectors orthogonal to the respective mid-surface; N is
the normal position vector and n is the director vector (they define the position of a body position P
respect to its reference configuration; P’ in the deformed one); u(ξ, η, ζ) are the spatial displacements.
Finally ξ and η are the manifold coordinates, whereas ζ is the normal coordinate to the mid-surface.
All these concepts are ilustrated in Figures 2.5 and 2.6.
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ζ

Deformed configuration

Y

X

η

P

Aξ

u

u

P’
aξ

aη

Aη

x
x

X

Reference configuration

A3

a3

ξ

ξ

η

X

Z

ζ

Figure 2.5: Natural local bases for reference and deformed configurations.

The director vector n is defined as:

n =

∞∑
i=1

ζini (2.14)

However, in this case an approximation until the third member is performed, resulting:

n = ζn1 + ζ2n2 + ζ3n3 (2.15)

Expressing the director vector in terms of the the normal position vector N and the difference between
them d, it is obtained:

n = N + d (2.16)

d = ζ(ψ + w1) + ζ2w2 + ζ3w3 (2.17)

where ψ is the CLT rotation and w1, w2, w3 are the components of the hierarchic difference vector,
associated to the different order. The hierarchic difference vector can be defined as:

w = ζw1 + ζ2w2 + ζ3w3 (2.18)

Since the shell does not allow deformation in the thickness direction, the difference vector depends
only on the manifold components. Therefore:

w = w1A1 + w2A2 (2.19)

The second and third term of Equation (2.18) represent the quadratic and cubic displacements, inherit
to the TSDT. However if it is assumed that the section is free of tangential stress at the top and the
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2. An Isogeometric higher-order locking-free shell

A3

Deformed configuration

Reference configuration

Aη

P
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η

N

Aξ

η

P

ξ

ξ

aξ

n

d
P’

w

N

ζ(ψ ×A3)
a3

aη

Figure 2.6: Hierarchic difference vector.

bottom of the laminate [3] (τ13(±h/2) = τ23(±h/2) = 0), the following results are obtained:

w2 = 0 (2.20)

w3 = − 4

3h2
w1 = α w1 (2.21)

Thus having the TSDT the same number of d.o.f. as the FSDT.

The linearized strain tensor can be expressed as:

εij =
1

2
(Giu,j + Gju,i) (2.22)

The expression of the displacements according to this new theory is:

u = u + ζ( ψ × A3) + w1(ζ + αζ3) (2.23)

The components of the strain tensor are:

εξξ = Aξu,ξ + ζAξ(ψ,ξ×A3) + Aξw1,ξ(ζ + αζ3)

εηη = Aηu,η + ζAη(ψ,η ×A3) + Aηw1,η(ζ + αζ3)

γξη = Aηu,ξ + ζAη(ψ,ξ×A3) + Aηw1,ξ(ζ + αζ3) + Aξu,η + ζAξ(ψ,η ×A3) + Aξw1,η(ζ + αζ3)

γξζ = Aξw1(1 + 3αζ2)

γηζ = Aηw1(1 + 3αζ2) (2.24)

It has to be kept in mind that quadratic and higher terms in ζ multiplied by A3,i have been neglected.
This simplification is quite normal for shell theories, since A3,i is proportional to the curvatures of
the mid-surface.

Particularly, the FSDT theory can be obtained by assuming α = 0. The CLT can be obtained by
assuming w1 = 0.
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2.3. Shell formulation

By integration through the thickness, the laminate strain-stress relationships can be obtained and
then expressed in the local system as:

N0

M0

P0

 =

A B E
B D F
E F H

ε0
0

ε1
0

ε3
0

 ;

[
Q0

R0

]
=

[
As Ds

Ds Fs

] [
γ0

0

γ1
0

]
(2.25)

where N0, M0, P0, Q0 and R0 are the resultant forces and moments, and εi0 and γi0 are the in–plane
strains, with:

(A,B,D,E,F,H) =

n∑
r=1

∫ zr

−zr
Qr1(1,z,z2,z3,z4,z6)dz (2.26)

(As,Ds,Fs) =

n∑
r=1

∫ zr

−zr
Qr2(1, z2, z4) dz (2.27)

Equations (2.26)-(2.27) represent the constitutive matrices of the laminate for the TSDT.

2.3.3 FEM implementation

In the context of shells, two well known kinds of locking have to be considered. Shear-locking and
curvature-locking tend to appear as the thickness or the curvature diminishes. In [24] the locking
is avoided with the use of higher-order NURBS, which work pretty well for moderate thicknesses.
However, low order NURBS and very thin thicknesses do not avoid this problem unless the mesh is
relative big. As well as with standard FEA, several techniques were developed to avoid this problem
(see [27, 28]), which also are adequate for IGA.

The shell equations developed in this paper, based on the hierarchic discrete difference vector [25, 26],
do not present shear-locking and only the curvature-locking has to be avoided. For this purpose, a
mixed formulation based on the Hellinger-Reissner variational principle is applied, which weak form
can be described as follows:

Πh
HR(ε,u) =

1

2

∫
Ω

ε : C : ε dΩ +

∫
Ω

ε : C : (εd − ε) dΩ−
∫

Γ

u fdΓ (2.28)

which by minimization leads to:

δΠh
HR(ε,u) = 0

∫
Ω

δε : C : (εd − ε)dΩ +

∫
Ω

δεd : C : ε dΩ−
∫

Γ

δu fdΓ = 0 (2.29)

By substitution of the projected strain ε = Ñβ and the displacement based one εd = B q, equation
(2.29) can be rewritten as:

δΠh
HR(ε,u) = 0

δβT
∫

Ω

[ÑTCB]q− [ÑTCN]βdΩ + δqT(

∫
Ω

[BTCÑ]βdΩ−
∫

Γ

NTf dΓ) = 0 (2.30)

28



2. An Isogeometric higher-order locking-free shell

Finally, this expression can be expressed in a matrix form as:[
Kuu Kuβ

Kβu Kββ

] [
q
β

]
=

[
F
0

]
(2.31)

being:

Kuu =

∫
Ω

[BTCB]dΩ; Kuβ =

∫
Ω

[BTCÑ]dΩ

Kβu =

∫
Ω

[ÑTCB]dΩ; Kββ = −
∫

Ω

[ÑTCÑ]dΩ

F =

∫
Γ

NTf dΓ (2.32)

The scheme for the projection is the Table 2.1. The matrix Kuu is referred to unprojected strains.

ξ η
u p q
εξξ p− 1 q
εηη p q − 1
γξη p− 1 q − 1

Table 2.1: Scheme for the projection.

2.4 Numerical results

In this section some benchmark static and dynamic problems analized with the introduced TSDT,
are compared with the standard IGA formulation. Additionally, CLT and FSDT are theories also
considered. For all the FSDT problems, a shear correction factor K=5/6 was used; TSDT do not
require any shear correction factor. First of all, a flat analysis is performed in order to proof that
element is free of shear locking. Additionally the results are compare with standard NURBS. Regarding
the notation, the symbol (*) will denote the hierarchic discrete difference vector, in combination with
the projection technique in all the following figures and tables.

2.4.1 Simply supported plate

A simply supported isotropic rectangular plate of dimension a x b was studied. The plate was assumed
to be square (a=b=1). The IGA model can be seen in Fig. 2.7. A 8x8 mesh with fourth order NURBS
basis was used. The material assumed properties are:

Material 1
E=7·107 kN/m2, ν=0.30.

For displacements the following normalization was applied:

ω = ω0(
a

2
,
b

2
)(
Eh3

a4q0
) (2.33)

where a and b are the plate dimensions; h is the laminate thickness and q0 is the value of the applied
load.
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2.4. Numerical results

Figure 2.7: IGA Plate model. Element mesh and control points.

Static analysis under a uniform load

The defined simply supported plate with Material 1 was subjected to a uniform load. Results are
presented in Tables 2.2-2.4 for standard NURBS [24] and for the shell with the discrete vector theory
for quadratic, cubic and quartic NURBS. The analytical thin solution value is 4.0624 [29]. As it can
be seen, the effects of locking increase as the NURBS order diminishes for the standard NURBS.
However the hierarchic vector theory is free of locking.

a/h IGA FSDT IGA TSDT Hier FSDT Hier TSDT Thin IGA
5 4.9043 4.9026 4.9043 4.903
10 4.2729 4.2728 4.2729 4.2728
102 4.0644 4.0644 4.0645 4.0645
103 4.0673 4.0655 4.0624 4.0624 4.0624
104 4.0965 4.0956 4.0624 4.0624
105 4.0983 4.0983 4.0624 4.0624

Table 2.2: Standard IGA vs. hierarchic approximation for quartic NURBS and analytical results for an
isotropic square plate for CLT, FSDT and TSDT subjected to a uniform load.

a/h IGA FSDT IGA TSDT Hier FSDT Hier TSDT Thin IGA
5 4.9044 4.9028 4.9042 4.9026
10 4.2729 4.2728 4.273 4.2729
102 4.0665 4.0656 4.0646 4.0646
103 4.01 4.038 4.0625 4.0625 4.0625
104 3.5773 3.591 4.0625 4.0625
105 3.5514 3.5516 4.0625 4.0625

Table 2.3: Standard IGA vs. hierarchic approximation for cubic NURBS and analytical results for an
isotropic square plate for CLT, FSDT and TSDT subjected to a uniform load.

Figure 2.8 represents the error of the central normalized displacement for a fixed mesh of 8 x 8
elements. It can be appreciated how these values are not sensitive to the slenderness and therefore
how the hierarchic difference vector strategy is free of locking. It can also be appreciated that higher
order NURBS converge to the analytical solution for the selected mesh, whereas the second order
NURBS has not reach the final value.
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2. An Isogeometric higher-order locking-free shell

a/h IGA FSDT IGA TSDT Hier FSDT Hier TSDT Thin IGA
5 4.904 4.9017 4.8936 4.8919
10 4.2713 4.2708 4.2576 4.2575
102 3.9259 3.9688 4.0455 4.0455
103 3.563 3.5692 4.0433 4.0433 4.0433
104 3.5513 3.5513 4.0433 4.0433
105 3.5511 3.5511 4.0433 4.0433

Table 2.4: Standard IGA vs. hierarchic approximation for quadratic NURBS and analytical results for an
isotropic square plate for CLT, FSDT and TSDT subjected to a uniform load.
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Figure 2.8: IGA vs. hierarchic (*) vector displacements error for quadratic, cubic and quartic NURBS for
the simply supported plate.

Eigenmode analysis

In this case normalized frequencies are presented for the same isotropic plate for several slenderness.
Here fourth-order NURBS were used and a 16x16 mesh. The first 256 modes are presented for the
FSDT and TSDT solutions. Both of them were studied with standard NURBS and with the hierarchic
vector theory. Figure 2.9 presents the relationship between the shear deformation theories and the
CLT. Although higher order NURBS are used, locking effects increase as frequency does for the
standard NURBS. The hierarchic vector theory is not sensitive to locking effects.
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2.4. Numerical results

Frequencies were normalized by the following expression:

ω = ωi(a
2/h)

√
ρ/E2 (2.34)
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Figure 2.9: IGA vs. hierarchic vector normalized frequencies for h=0.2 m, h=0.1 m, h=0.01m and h=0.001m
for the simply supported plate.
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2. An Isogeometric higher-order locking-free shell

Mode IGA FSDT Hier FSDT IGA TSDT Hier TSDT TSDT [30] Thin IGA Thin [30]
1 19.065 19.065 19.1 19.065 19.065 19.739 19.739
2 45.483 45.483 45.487 45.487 45.487 49.348 49.348
3 69.794 69.794 69.809 69.809 69.809 78.957 78.957
4 85.038 85.038 85.065 85.065 85.065 98.696 98.696
5 106.684 106.684 106.735 106.735 106.74 128.305 128.31
6 133.621 133.622 133.72 133.721 133.72 167.784 167.78
7 140.057 140.057 140.17 140.17 140.17 177.653 177.65
8 152.609 152.609 152.753 152.754 152.75 197.393 197.39
9 182.324 182.324 182.565 182.566 182.57 246.741 246.74
10 188.012 188.018 188.275 188.282 188.28 256.615 256.61
11 204.62 204.626 204.956 204.962 204.96 286.223 286.22
12 220.6 220.601 221.017 221.018 221.02 315.828 315.83
13 230.936 230.942 231.412 231.417 231.41 335.571 335.57

Table 2.5: Normalized frequency for isotropic plate of thickness h=0.1m for CLT, FSDT and TSDT.

Figure 2.9 shows that for small thicknesses and higher frequencies, the hierarchic vector formulation
tends to the thin solution. The standard IGA becomes inaccurate for small thicknesses and requires
a mesh refinement to be more accurate.

A closer look to the same plate for a thickness h=0.1 m is presented in Table 2.5 for the first 13 modes,
in order to observe the differences between the frequencies for a moderate thick plate.

Static analysis of a skew plate under a uniform load

In this case a clamped skewed plate is studied for a slenderness of value 1000 (L/t=1000), for the FSDT
and TSDT and two skew angles. As the slenderness is relative high, both theories FSDT and TSDT
give the same results. Therefore, normalized central displacement are compared for quadratic, cubic
and quartic NURBS. Several meshes with the hierarchic vector theory for the TSDT are presented
in Table 2.6. Results converge to the thin case values [31], as expected with the selected thickness.
Figure 2.10 presents the model of a 8x8 element mesh and 45◦ skew angle.

4x4 8x8 16x16
θ p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4 Thin Anal.[31]

60◦ 0.5271 0.7614 0.7714 0.7066 0.7682 0.769 0.7534 0.769 0.769 0.769
45◦ 0.2199 0.3522 0.3715 0.3266 0.3748 0.377 0.3631 0.377 0.377 0.377

Table 2.6: Normalized displacements for a clamped isotropic skew plate with a TSDT under a uniform load.

Figure 2.10: Skew plate model. Element mesh and control points.

Besides the shear-locking, the curvature of the shell introduces numerical locking, due to the effect
of the coupling between the bending and membrane deformation. In the following examples this
phenomenon will be illustrated.
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2.4. Numerical results

2.4.2 Cantilever plate

A clamped isotropic circular plate of radius R=1 m and width b=0.2 m was studied. The IGA model
can be seen in Fig. 2.11, jointly with the deformed configuration. A 1x16 mesh was used. The plate
was subjected to an uniform line load in the free edge. The material assumed properties are:

Material 2
E=7·107 kN/m2, ν=0.

Tables 2.7-2.9 show the displacement us in the length direction. Results for standard IGA, for the
discrete difference vector and for the projection method are presented. The solution is asymptotically
convergent to the thin case, which normalized value is 6.1062. Since it is a bending dominated
problem, the load is normalized with t3 in order to have always the same result. It can be seen how
the projection technique is free of locking, being the results independent from the slenderness. The
standard IGA formulation is the worst of them since it has two kinds of lockings. Figure 2.12 shows
the mentioned results for all the computed slenderness. In this case, for the sake of simplicity, only
for the FSDT and TSDT and for cubic and quartic NURBS.

us

0

6.1062

Ex = 7·107 kN/m2

ν=0

R=1 m

Clamped
Edge

qL=108 t3 kN/m

s

qL

Figure 2.11: Cantilever plate mesh (8 elements) and deformed configuration.

a/h IGA FSDT IGA TSDT Hier FSDT Hier TSDT FSDT* TSDT*
5 6.2588 6.2562 6.2564 6.2561 6.2564 6.2561
10 6.1443 6.1438 6.1438 6.1438 6.1438 6.1438
102 6.1066 6.1066 6.1066 6.1066 6.1066 6.1066
103 6.105 6.1051 6.1055 6.1055 6.1062 6.1062
104 6.0755 6.076 6.0804 6.0804 6.1062 6.1062
105 5.1558 5.2484 6.0423 6.0423 6.1062 6.1062

Table 2.7: Standard IGA vs. hierarchic vs. hierarchic (*) approximation for quartic NURBS and analytical
results for a cantilever plate for FSDT and TSDT subjected to a vertical load.
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a/h IGA FSDT IGA TSDT Hier FSDT Hier TSDT FSDT* TSDT*
5 6.2588 6.2551 6.2551 6.255 6.2551 6.255
10 6.1443 6.1435 6.1436 6.1436 6.1436 6.1436
102 6.1027 6.1033 6.1042 6.1042 6.1065 6.1065
103 5.8565 5.8674 5.9026 5.9026 6.1062 6.1062
104 3.1346 3.2269 3.8916 3.8916 6.1062 6.1062
105 0.1431 0.1662 3.0662 3.0662 6.1062 6.1062

Table 2.8: Standard IGA vs. hierarchic vs. hierarchic (*) approximation for cubic NURBS and analytical
results for a cantilever plate for FSDT and TSDT subjected to a vertical load.

a/h CLT IGA (p=3) CLT* (p=3) CLT IGA (p=4) CLT* (p=4)
5 6.1511 6.1511 6.151 6.151
10 6.1174 6.1174 6.1174 6.1174
102 6.1063 6.1063 6.1039 6.1063
103 6.1055 6.1062 5.9026 6.1062
104 6.0804 6.1062 3.8916 6.1062
105 6.0416 6.1062 3.0664 6.1062

Table 2.9: Standard IGA vs. hierarchich (*) approximation for cubic and quartic NURBS and analytical
results for a cantilever plate for CLT subjected to a vertical load.
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Figure 2.12: IGA vs. hierarchic vs. hierarchic (*) vector displacements error for quadratic and cubic NURBS
for the cantilever plate for the FSDT and TSDT.

2.4.3 Scoderlis Lo-roof

Another problem to illustrate the advantage of the locking-free techniques is the well known Scoderlis
problem. In this case it would be computed for a TSDT. The selected slenderness is in this case
R/t=1000, which should give a solution similar to the CLT.

The cylinder of radius R and edge length L is fixed in the curved edges (ux = wz = 0). It is assumed
that R = 25 m, L = 50 m, h = 0.025 m, 2α = 80◦, which is the total angle that defines the circular
edges (a = 2αR) and a dead load of qz = 0.90 kN/m2. The assumed material has the following
properties:

Material 3
E=4.32·108 kN/m2, ν=0
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Figure 2.13 defines this problem and also shows the vertical displacements under the dead load. The
numerical convergence value obtained for this problem is 0.3204, which is the same with all the different
approximations. In Figure 2.14 the maximum vertical displacement for several meshes at the center of
the free edge is plotted for the standard IGA, the hierarchic approximation and the hierarchic (*). It
can be seen how the presented formulation has better convergence. For small meshes, the accuracy is
much better. The standard IGA is the worst strategy, as expected, whereas the hierarchic lies between
them. Results are presented in Table 2.10.

Elements/side IGA(p=3) IGA(p=4) Hier (p=3) Hier (p=4) Hier* (p=3) Hier* (p=4)
2 0.0673 0.1427 0.07525 0.1428 0.1063 0.1568
4 0.13497 0.1925 0.14254 0.1953 0.2893 0.3294
8 0.2038 0.2952 0.2558 0.3142 0.3199 0.3205
16 0.3074 0.3201 0.3192 0.3204 0.3204 0.3204
32 0.3202 0.3204 0.3204 0.3204 0.3204 0.3204

Table 2.10: Scoderlis problem. Maximum vertical displacement wz for standard IGA vs. hierarchic vs.
hierarchic (*) approximation for cubic and quartic NURBS.
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Figure 2.13: Maximum vertical displacement for the standard IGA, hierarchic vector and hierarchic (*) for
cubic and quartic NURBS.

2.5 Conclusions

In this contribution, a shell has been implemented with an IGA NURBS-based formulation with a
locking strategy. Shear-locking is avoided with the use of a discrete difference vector theory, whereas
curvature-locking is avoided with a projection technique. Several problems have been analized in order
to proof the advantages of the locking-free formulation for a TSDT, as well the typical FSDT and
CLT. In further works this chapter will be a paper in which some additional composite results, similar
to the ones presented in Chapter 1, will be presented. The main objective was to illustrate how the
selected strategy avoid the locking phenomenon which is usually done with isotropic examples.
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Figure 2.14: Scoderlis model and deformed configuration.
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Chapter 3

On the Accuracy of a 4-Node Delaminated
Composite Plate Element and its
Application to Damage Detection

In this chapter the following paper is presented: “On the Accuracy of a 4-Node De-
laminated Composite Plate Element and its Application to Damage Detection” published
in the Journal of Vibration and Acoustics. Transactions of ASME. in 2013, with doi:
10.1115/1.4023994. The chapter develops a 4-node delaminated finite element composite
plate and presents some results in the field of SHM, to quantify the effect of delamination
in composite plates.

Abstract

This paper presents a new 4-node composite element, which incorporates nd delaminations through
its thickness. Based on the Extended Finite Element Method (X-FEM) technology, the element is
particularized on a CLT (Classical Laminate Theory). Delamination is considered in the kinematic
equations with additional degrees of freedom. The result is a 4-node quadrilateral element requiring
only two single FEM (Finite Element Method) formulations, a bending one and a membrane one.
An important result is that this formulation has the same accuracy as when separate elements are
considered (“4 Region Approach"). It is furthermore proven that the delaminated element passes
the “Patch Test" if the selected FEM formulations to build the element pass the test in the pure
single problems, making this methodology very attractive to develop other fractured elements. To
illustrate this result, two Benchmark problems were studied: firstly a complete delaminated cantilever
plate, and secondly a complete delaminated circular plate. The element was tested in the context of
SHM (Structural Health Monitoring). Frequency shifts, damage indexes and changes in mode shapes
and Frequency Response Functions (FRF) were obtained to quantify the severity of damage due to
delamination.
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3.1 Introduction

The use of advanced composite materials has grown in recent decades. From the structural point of
view, their stiffness, weight, fatigue-life and strength limit make this kind of material very attractive.

It is well known that the delamination or debonding of adjoining plies is one of the most frequent
types of damage in composite structures. This modifies the carrying capacity of the structure and can
lead to catastrophic consequences if they are large enough. Therefore, delamination must be taken
into account in the process of designing such structures.

In the context of SHM, model based methods are one of the recent damage detection research lines
that has been successfully applied. They combine a response measured on a structure with a numerical
model, in order to detect damage, which is usually subdivided into four levels of damage [32] (detec-
tion, localization, severity and remaining life). In this case, the physical properties, obtained from
measurements, are the dynamic ones. Several damage identification methods based on the change of
eigenfrequencies, mode shapes, damping ratios, FRF, etc., have been used to quantify damage in com-
bination with a damage detection technique (Artificial Neuronal Networks or ANN, model updating
strategies, Genetic Algorithms, etc). This implies the minimization of a cost function based on these
damage indicators to finally arrive at the first three levels of damage [32]. Improvements in terms of
location (levels II and III) can be performed by the use of modal shapes, the curvature shapes being
more powerful than displacement ones. All the identification techniques involve a compromise between
the severity of damage and the number of modes required to be able to detect damage. Interested
readers can find detailed information in [33, 34, 35, 36, 37].

Fritzen and Bohle in [38, 39] investigated the capabilities of model based methods in civil engineering
structures with model update strategies, performed minimizing a cost function in terms of frequencies
and mode shapes extracted from FRF, obtained with piezoelectric (PZT) accelerometers. Similar
work in frame structures was presented by Yu and Lin in [40] and by Liu et al. in [41]. Jenq and
Lee [42] utilized a back-propagation neural network with an adaptive learning rate, using frequency
changes as inputs, to predict hole defect sizes and locations in Glass Fiber Reinforced Plastic (GFRP)
composite laminated beams. Feng and Bahng [43] proposed a new method for the monitoring of
jacketed columns that employs the combination of vibration testing, neural network, and finite element
techniques. Frequencies and mode shapes were used as inputs.

More specifically, Zak et al. [44, 45] studied the vibration of delaminated composite beams and plates.
Changes in eigenfrequencies were validated in a finite element model and experimental data. Using
three-layer feed-forward neural networks, Hanagud and Luo [46] studied a composite plate based on
measured structural dynamic response. Analytical models were constructed to predict the dynamic
response of the damaged structure, based on the computation of damage indexes, obtained from the
mode shapes. They were used as inputs and damage parameters (location and extent) as outputs.
The influence in frequency shifts and FRF due to debonding on sandwich panels was studied by
Kim and Hwang in [47] with good agreement with numerical results. Krawczuk et al. [48] applied
a genetic algorithm to identify and locate damage in a laminated composite beam using frequency
shifts as inputs. The model was validated with numerical tests. Ling et al. in [49] used fiber-optic
sensors to measure FRF, which is used to detect and identify the size and location of delaminations
in composite beams. Results are also validated with a numerical model. Wei et al. in [50] studied
damage detection with model-based neural networks and vibration response measurement. Damage-
induced energy in terms of the FRF of the signals was used as input to locate delamination and
extent. Sanders et al. in [51, 52] discussed the subject of detecting delamination within composites
with neural networks. Fiber-optic sensors were used to measure the first five modal frequencies
of several glass/epoxy composite beams. Harrison and Butler used a genetic algorithm to locate
delamination on beams in [53] using frequency shifts and mode shapes. Recently, Figueiredo et al.
have used piezoelectric sensors for damage detection in composite plates using time-series analysis in
[54]. Results are also compared to those provided from FRF analysis. Zwink have located damage in
composite specimens due to impact loads with vibration-based techniques considering the non-linear
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response in [55]. Finally, Saravanos and Hopkins studied in [56] the change of damping ratios in
cantilever composite beams and compared the results with numerical simulations.

On the other hand, developing a delaminated composite implies two models, the first being a composite
theory and the second a fracture model. The main composite theories are based on the so-called
Equivalent Single Layer Theory (ESL), resulting in the Classical Laminate Theory (CLT) for thin
plates, the First Order Shear Deformation Theory (FSDT) for thick plates, and the Higher Order
Theories (HOT) as a generalized ESL theory. Focusing on the layer level, in order to study interply
stresses, Layerwise theories were introduced by Reddy in [3].

A review of the models developed for delaminations was offered initially by Zhou et al. in [33] and more
recently by Delia and Shu in [57]. Fracture models mostly consider delamination using the so-called
“4 Region Approach” (see Refs. [33, 57]). This assumption physically separates the model into four
different elements that are properly connected at the nodes. Figure 3.1 shows a delaminated composite
and the model of the “4 Region Approach”. In the context of SHM, this is the most commonly applied
technique. This technique has also been applied by Damghani et al. in [58] to study the buckling of
plates, and by Azam in [59] to study the buckling of shells.

An alternative and less common way to model delaminations is considering them in the equations
of the problem. Thus, when new kinematic equations are properly defined, the delamination can be
taken into account. This methodology affords the advantage of not requiring remeshing. As in the
X-FEM technology, introduced by Babuska and Melenk in [60, 61], the discontinuity generated by the
delamination can be included through new degrees of freedom that represent the relative movements
in the discontinuity. This concept was firstly applied in the context of SHM with successful results
by Saravanos and Hopkins in [56] to study the effect of delaminations on damping ratios in cantilever
beams, and by Chattopadhay et al. in [62, 63] and Swann et al. in [64] with delaminated composite
plates, comparing the numerical model and the experimental data.

In the present paper, we are mostly interested in comparing the two delamination modeling method-
ologies and showing that numerically they provide the same results. The present methodology is
signaled as a better way to model delaminations for further applications, involving advantages in
terms of design, such as no need for remeshing, and allowing for multiple delaminations. Further-
more, the effect of delamination on some of the reviewed damage indicators is determined, presenting
the new element as a tool for damage detection techniques.

4

Element 1 Element 4

Element 3

Element 2

1

3

2

Figure 3.1: 4 Regions Approach
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3.2 Delamination model

3.2.1 Kinematic equations of a delamination

In this paper, the delaminated element developed is based on a CLT theory whose kinematic equations
are given by:

u(x, y, z) = u0(x, y) + θy0(x, y)z +

nd∑
r=1

[
ur(x, y) + θyr(x, y)z

]
H(z − zr)

v(x, y, z) = v0(x, y) + θx0(x, y)z +

nd∑
r=1

[
vr(x, y) + θxr(x, y)z

]
H(z − zr)

w(x, y, z) = w0(x, y) +

nd∑
r=1

[
wr(x, y)H(z − zr)

] (3.1)

where u, v, and w are displacements; θx and θy are rotations; H is the Heaviside step function; the
subscript 0 indicates mid-plane quantities and nd is the number of delaminations considered. Variables
with subscript r are the new degrees of freedom describing the kinematic discontinuities across the
r-th delamination. These new variables represent relative displacements and rotations between plies.

The CLT of an undelaminated plate relates internal forces/moments, N0 and M0, with in-plane
strains, ε0 and κ0, i.e.,

{
N0

M0

}
=

[
A B
B D

]{
ε0
κ0

}
(3.2)

where A is the membrane stiffness matrix, D the bending stiffness matrix and B the coupling matrix,
all of them referred to the laminate mid-plane and N0, M0 are the resultant internal forces and
moments of the laminate section.

Using the kinematic equations (5.1), an analogue to Eq. (5.2) can be obtained for a laminate with nd
delaminations:



N0

N1

.

.
Nnd

M0

M1

.

.
Mnd



=



A A1 . . And B B1 . . Bnd

A1 A11 . . A1nd B1 B11 . . B1nd

. . . . . . . . . .

. . . . . . . . . .
And A1nd . . And Bnd B1nd . . Bnd

B B1 . . Bnd D D1 . . Dnd

B1 B11 . . B1nd D1 D11 . . D1nd

. . . . . . . . . .

. . . . . . . . . .
Bnd B1nd . . Bnd Dnd D1nd . . Dnd





ε0

ε1

.

.
εnd
κ0

κ1

.

.
κnd



(3.3)

where Arr = Ar, Brr = Br for r = 1, 2, ..nd are the constitutive matrices of the r-th delamination
and Nr, Mr are the internal forces and moments of the partial section (above the r-th ply).
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3.2.2 FEM formulation

Using the weak form of the elastic problem, the Stiffness and Mass matrices can be obtained, i.e.,

∫
ΩV

[
ρ ωi üi + ωi,j σij

]
dΩV =

∫
Ω

ωi fi dΩ +

∫
Γq

ωi ti dΓ (3.4)

where ΩV is the volume of the body; Γ is the body surface and Γq the surface with load prescriptions;
fi are the body loads and ti are surface loads; ωi are the variations; ρ is the density; ui are the
displacements and üi are the accelerations and finally σij are stresses. From Eq. (3.4), the Stiffness
Matrix is obtained as:

K =

∫
Ω

[
BT

M A BM + BT
M B BB + BT

B B BM + BT
B D BB

]
dΩ +

nd∑
r=1

∫
Ω

[
BT

M Ar BrM + BT
rM Ar BrM + BT

M Br BrB + BT
rM Br BB +

BT
B Br BrM + BT

rB Br BM + BT
B Dr BrB + BT

rB Dr BB

]
dΩ +

nd∑
r=1

nd∑
s=1

∫
Ω

[
BT

rM Ars BsM + BT
rM Brs BsB +

BT
rB Brs BsM + BT

rB Drs BsB

]
dΩ (3.5)

where Ω is the mid-plane of the plate; BM, BB are the deformation matrices of the membrane (u0, v0)
and bending (w0, θx0, θy0) problem and BrM, BrB are the deformation matrices of the membrane
(ur, vr) and bending (wr, θxr, θyr) problem. Analogously, the Mass Matrix is obtained as:

M =

∫ t/2

−t/2

[
m1 +m2 +m3 +m4

]
dz (3.6)

m1 =

∫
Ω

ρ[NT
uNu + NT

v Nv + NT
wNw + z2(NT

θxNθx + NT
θyNθy)] dΩ

m2 =

nd∑
r=1

∫
Ω

ρ[NT
uNur + NT

urNu + z(NT
uNθyr + NT

urNθy + NT
θyrNu + NT

θyNur)+

z2(NT
θyNθyr + NT

θyrNθy)]H(z − zr) dΩ+
nd∑
r=1

nd∑
s=1

∫
Ω

ρ[NT
urNus + z(NT

urNθys + NT
θyrNus)+

z2NT
θyrNθys]H(z − zr)H(z − zs) dΩ

m3 =

nd∑
r=1

∫
Ω

ρ[NT
v Nvr + NT

vrNv + z(NT
v Nθxr + NT

vrNθx + NT
θxrNv + NT

θxNvr)+

z2(NT
θxNθxr + NT

θxrNθx)]H(z − zr) dΩ+
nd∑
r=1

nd∑
s=1

∫
Ω

ρ[NT
vrNvs + z(NT

vrNθxs + NT
θxrNvs)+

z2NT
θxrNθxs]H(z − zr)H(z − zs) dΩ
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m4 =

nd∑
r=1

∫
Ω

ρ(NT
wNwr + NT

wrNw)H(z − zr) dΩ+

nd∑
r=1

nd∑
s=1

∫
Ω

ρNT
wrNwsH(z − zr)H(z − zs) dΩ

(3.7)

where:

u0(x, y) = Nu u, v0(x, y) = Nv u, w0(x, y) = Nw u (3.8)
θx0(x, y) = Nθx u, θy0(x, y) = Nθy u

ur(x, y) = Nur u, vr(x, y) = Nvr u, wr(x, y) = Nwr u

θxr(x, y) = Nθxr u, θyr(x, y) = Nθyr u

With the formulation presented in Section 5.2.1, a finite element was developed. This element has 5
+ 5 nd degrees of freedom per node, due to the nd delaminations in its thickness. The 5 nd degrees
of freedom represent the relative displacements in each delamination. The element requires two finite
element formulations to develop the global behaviour. One is the membrane formulation, modeled
with the QMITC element [65]. The other one is the bending formulation, modeled with the DKQ
element [66]. This element was implemented in the Finite Element Analysis Program FEAP ([67]-[28]).

3.3 Element validation

One of the interesting results of this paper is that this methodology always leads to elements that
pass the “Patch Test". Two Benchmark problems show, in this section, that the accuracy of this
methodology is the same as that of the “4 Region Approach" (separate elements), underlining this
alternative as a better way to model delamination.

3.3.1 Patch Test

The developed element passes the “Patch Test" if the single FEM formulations to build the element
likewise pass the “Patch Test" in the pure single problems. No FEM tests are required and a brief
demonstration is expounded here. Two steps are needed to prove this:

• Every composite passes the “Patch Test" if the uncoupled membrane and bending formulation
pass the “Patch Test"

• The delaminated element passes the “Patch Test" if the kinematic equations have the form
described in this paper (see Eq. (5.1))

The first argument can be easily understood since the uncoupled trial solutions: u={u0, v0} and
w={w0, θx0, θy0} ∈ H1 Sobolev space1. Then, the Cauchy − Schwartz inequality2 ensures that the
coupling term of the membrane-bending “Patch Test" problem has an exact solution, verifying the
“Patch Test" for a composite element.3

1The DKQ element is a C0 element.
2 |
∫
Ω fg dΩ | ≤

( ∫
Ω f

2 dΩ
)1/2( ∫

Ω g
2 dΩ

)1/2

3For C1 bending elements, the trial solution w={w0, θx0, θy0} ∈ H2 Sobolev space; analogously it can be proven
that the composite element also passes the “Patch Test".
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Secondly, the kinematic equations described in this paper allow us to define the following trial solutions:

u={u0, v0︸ ︷︷ ︸, u1, v1︸ ︷︷ ︸, u2, v2︸ ︷︷ ︸, ..., und , vnd︸ ︷︷ ︸}
0 1 2 ... nd

w={w0, θx0, θy0︸ ︷︷ ︸, w1, θx1, θy1︸ ︷︷ ︸, w2, θx2, θy2︸ ︷︷ ︸, ..., wnd , θxnd , θynd︸ ︷︷ ︸}
0 1 2 ... nd

(3.9)

This structure ensures that the new trial functions ∈ H1. Then, it is trivial that all the new coupling
terms have an exact solution for the “Patch Test" problem, as in the case of the undelaminated
composite.

Finally, for higher order composite theories, it can be easily proven that this methodology leads to
elements that always pass the “Patch Test" if the selected single elements to build the delaminated
one also pass the “Patch Test".

3.3.2 Convergence and accuracy compared with separate elements. Benchmark
problem 1

First of all, a complete delaminated cantilever plate with beam behaviour and dimensions 0.20 m x
0.02 m was studied. The mechanical properties of the ply were taken to be Ex = 150, Ey = 11.5,
Gxy = 5 GPa, ν = 0, ρ = 1560 kg/m3. The ply thickness was considered to be tp = 0.188 mm. The
composite is a 14 layer [0, 90, 0, 90, 0, 90, 0]S , plotted in Fig. 3.2.

ν = 0

ρ = 1560 kg/m3

u1 = v1 = w1 = θx1 = θy1 = 0
u0 = v0 = w0 = θx0 = θy0 = 0

Clamped boundary

Ply properties
Ex = 150 GPa

Ey = 11.5 GPa

Gxy = 53 GPa

tp = 0.188 mm
a) b)

Figure 3.2: a) Delaminated cantilever beam. b) FEM model.

A uniform load was applied to the lower part of the plate, ensuring the opening of the delamination.
Figure 4.2a shows the relative error of the L2-Norm for the delaminated element and the one obtained
from a cantilever plate element of 7 layers [0, 90, 0, 90, 0, 90, 0] that constitutes the lower part
of the composite (separate elements). The separate part can be directly computed with the DKQ
formulation. Both formulations have practically the same relative error of the L2-Norm for every
mesh.

Figure 4.2b shows the relative error in the first four eigenfrequencies for both formulations. It can
be seen that the results are practically equivalent for every mesh and that the error grows with the
frequency, since the mesh loses accuracy when the modes increase.

45



3.3. Element validation

10−8

10−7

10−6

10−5

10−4

10−3

10−2

a) 1 10 100 1000
Mesh parameter (h)

Relative L2–Norm

3
1

DKQ ELEM
10−6

10−4

10−2

1

b) 1 10 100 1000
Mesh parameter (h)

Relative frequency error

2
1

2

1

4
3

DKQ ELEM

Figure 3.3: a) Relative error in L2-Norm for separate elements (DKQ) and delaminated element. b) Relative
error in eigenfreq. (1-4). Lines (DKQ), dots (delaminated element).

3.3.3 Convergence and accuracy compared with separate elements. Benchmark
problem 2

Secondly, a complete delaminated circular plate, clamped in all its boundaries and having a radius of
0.50 m, was studied. The mechanical properties of the ply were considered to be Ex = 150, Ey =
150, Gxy = 53 GPa, ν = 0.42, ρ = 1560 kg/m3. The ply thickness was taken to be tp = 0.188 mm.
The composite is a 14 layer [0, 90, 0, 90, 0, 90, 0]S , plotted in Fig. 3.4.

Ply Properties
Ex = Ey = 150 GPa

Gxy = 53 GPa

ν = 0.42

ρ = 1560 kg/m3

tp = 0.188 mm

u0 = v0 = w0 = θx0 = θy0 = 0

u1 = v1 = w1 = θx1 = θy1 = 0

Clamped boundary

Symmetry
u0 = θx0 = 0

u1 = θx1 = 0

v0 = θy0 = 0

v1 = θy1 = 0

a) b)

Figure 3.4: a) Delaminated circular clamped plate (quarter represented). b) FEM model.

A uniform load was applied to the upper part of the plate, ensuring, as in the previous case, the
opening of the delamination. Figure 4.3a shows the relative error in L2-Norm of the delaminated
element, and the one obtained from the upper part constituted by a 7 layer [0, 90, 0, 90, 0, 90, 0].
The separate part can be directly computed by means of the DKQ formulation. As in the previous
case, both formulations have practically the same relative error of the L2-Norm for every mesh.

Analogously, Fig. 4.3b shows the relative error in the first three axisymmetrical eigenfrequencies for
both formulations. It can be seen that the results are practically equivalent for every mesh and that
the error grows along with the frequency, since the mesh loses accuracy when the modes increase.

From these results, it can be concluded that the accuracy of this methodology is the same as when
separate elements are considered. This finding serves to confirm that the method is a very sound
option. It is important to remark that the accuracy of the solution depends only on the selected
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Figure 3.5: a) Relative error in L2-Norm for separate elements (DKQ) and delaminated element. b) Relative
error in eigenfreq. (1-3). Lines (DKQ), dots (delaminated element).

membrane and bending formulations. In this case, DKQ and QMITC elements are used, respectively.
If the formulations of the single elements are more accurate, the delaminated element will have the
same accuracy. It is moreover important to mention that this element is conceived for plate vibrations,
meaning that the study of accuracy was applied to bending problems.

3.4 Numerical examples for damage detection

Delamination detection is one of the main interests in the application of advanced composite materials
in the aeronautical industry. Controlling the size of existing delaminations in order to decide when
a structure must be repaired is a very important issue. The purpose of this section is to verify
the developed delamination FEM model for future applications in damage detection. As mentioned
in the Introduction, model based methods have been successfully applied in some previous works
[44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. Two numerical examples are then studied with two
different composite stacking sequences, in order to appreciate how the characteristic parameters of
delamination (location, extension and position in the thickness) affect the response of the specimen
in terms of the usually applied damage indicators: frequency shifts, damage indexes, mode shape
changes and FRF variations.

3.4.1 Cantilever beam

First, a cantilever plate with beam behaviour is studied, analyzing two different stacking sequences to
understand the effect of delamination. In this case, only one delamination in the thickness is considered
(nd=1). The beam has the same dimensions and ply properties as in Section 5.3. Table 3.1 shows
different delamination extensions, placed always at the coordinate x = 0.45 L (center of delamination).
The stacking sequences used are [0 90]3S and [0 90 45 − 45 0 90]S . Figure 3.6 shows the cantilever
beam modeled with the new element proposed in this paper.

Frequency shifts and mode shapes are obtained to quantify the effect of the delamination on its
dynamic response. From the damaged and undamaged response, a typical index of damage based on
the response of the entire beam is defined as:

DI =
|Φ0 − Φ1|
|Φ0|

(3.10)
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Delamination

u0 = v0 = w0 = θx0 = θy0 = 0

u1 = v1 = w1 = θx1 = θy1 = 0

Clamped boundary Ply properties
Ex = 150 GPa

Ey = 11.5 GPa

Gxy = 53 GPa

ν = 0 GPa

ρ = 1560 kg/m3

tp = 0.188 mm

Non delaminated composite

u1 = v1 = w1 = θx1 = θy1 = 0

Figure 3.6: Delaminated FEM Model of a cantilever beam. Green elements represent the delamination.

where subindex 0 represents the undamaged beam and subindex 1 the delaminated one; Φ is considered
to be a particular mode shape.

Extension Length (cm) Position in thickness
I 2.0 10% between plies 3-4
II 2.0 10% centered
III 1.0 5% centered
IV 0.4 2% centered

Table 3.1: Different delamination extensions and position in the thickness for the composite beam

Tables 3.2 and 3.3 respectively represent the frequency shifts and damage indexes (DI) for displace-
ments and curvatures in both stacking sequences. Some already known results can be underlined here.
They grow with the frequency, although not monotonically in the case of frequency shifts, requiring
the use of higher modes for the detection of minor damage. From both tables, it follows that mode
shapes/damage indexes have greater capability in damage detection than frequency shifts, damage
indexes of curvatures being a better damage indicator (see e.g. [34, 35, 36]), as is well known.

Mode Frequency shift (%)
I II III I II III

5 1.78 3.31 0.49 1.49 2.93 0.38
[0 90]3S 6 2.52 5.78 0.73 [0 90 45 − 45 0 90]S 2.41 4.11 0.59

7 2.14 2.83 0.50 5.64 3.11 0.38
Table 3.2: Frequency shifts of a cantilever beam of [0 90]3S and [0 90 45 − 45 0 90]S composites

In Figs. 3.7 and 3.8, the 6-th eigenvector of displacements and curvatures is plotted for both stacking
sequences and for the extensions I, II and III. The undamaged one is represented by 0. The influence
of the stacking sequence and position of the delamination in the thickness is clearly noted in the
delaminated area, since the eigenvector is quite different in this area for non-centered delaminations
(extension II) and for the [0 90 45 − 45 0 90]S composite. Centered delaminations always give (for
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Mode Displacement w Curvature κ
I II III IV I II III IV

5 6.57 13.64 2.11 0.14 29.52 51.51 15.24 4.95
[0 90]3S 6 10.49 20.19 3.44 0.23 43.60 59.85 18.90 6.04

7 16.60 26.11 4.52 0.29 67.59 54.47 15.63 4.91
5 7.44 10.71 1.61 0.10 65.78 39.46 11.65 3.54

[0 90 45 − 45 0 90]S 6 18.97 16.16 2.66 0.18 136.99 48.70 14.28 4.43
7 92.12 20.56 3.42 0.22 555.13 42.41 12.89 3.55

Table 3.3: Damage indexes DI (%) for displacements w and curvatures κ of a cantilever beam of [0 90]3S
and [0 90 45 − 45 0 90]S composites

a) 0 0.05 0.1 0.15 0.2
Beam Length

Eigenvector w

[0
,9

0]
3
S

0
II

I
III

b) 0 0.05 0.1 0.15 0.2
Beam Length

Eigenvector w

[0
,9

0
,4

5
,−

45
,9

0
,0

] S

0
II

I
III

Figure 3.7: Eigenvector 6 of displacements for extensions I, II and III. a) Composite [0 90]3S . b) Composite
[0 90 45 − 45 0 90]S . The undamaged one is represented by 0. The vertical dashed line represents the center
of the delamination.
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Figure 3.8: Eigenvector 6 of curvatures for extensions I, II and III. a) Composite [0 90]3S . b) Composite
[0 90 45 − 45 0 90]S . The undamaged one is represented by 0. The vertical dashed line represents the center
of the delamination.

every composite and position in the thickness) greater differences between the mode shapes outside
the delaminated area. This result is very important in the case of plates, since the information would
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be taken at sections not necessarily across the delamination (See F1 and F2 in the plate of the next
subsection).

Finally, location and extension delamination parameters are studied for the composite [0 90]3S . Fig-
ure 3.9 shows the relationship between frequency shifts and the location and size of delamination for
modes 5, 6 and 7. When the location changes, the delamination length is assumed to be 10%; and
when extension changes, position is assumed at x = 0.45 L. Figure 3.10 shows the 6-th eigenvector
of displacements for different delamination locations. In all cases, delamination is supposed to be
between 6-th and 7-th plies. Having more information at different points of the beam, mode shapes
prove more relevant for damage detection than frequency shifts.
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Figure 3.9: Frequency shifts (%) for composite [0 90]3S for modes 5, 6 and 7. a) Influence of the delamination
extension. Delamination center at x = 0.45 L. b) Influence of delamination location, with extension 10%.
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Figure 3.10: Eigenvector 6 of displacements for different delamination locations. Extension is 10%.

50



3. On the Accuracy of a 4-Node Delaminated Composite Plate Element and its Application to
Damage Detection

3.4.2 Plates

A composite clamped plate of dimensions 1.1 × 1.0 m is also studied. The mechanical properties of
the ply have been considered to be Ex = 150, Ey = 11.5, Gxy = 5 GPa, ν = 0.42, ρ = 1560 kg/m3

and constant ply thickness tp = 0.188 mm. The composite is a 14 layer [0, 90, 0, 90, 0, 90, 0]S . In this
case only one delamination in the thickness is considered (nd=1), whose sizes are described in Table
3.4. The stacking sequence of the laminate is [0 90]3S .

Extension Dim.(x) (cm) Dim.(y) (cm) Delam. area (%) Position in thickness
I 18.8 18.0 3.0% centered
II 14.4 14.0 2.0% centered
III 11.0 10.0 1.0% centered
IV 8.80 8.0 0.7% centered
V 6.60 6.0 0.4% centered
VI 4.40 4.0 0.2% centered
VII 18.8 18.0 3.0% between plies 3-4
VIII 14.4 14.0 2.0% between plies 3-4
IX 11.0 10.0 1.0% between plies 3-4
X 8.80 8.0 0.7% between plies 3-4
XI 6.60 6.0 0.4% between plies 3-4
XII 4.40 4.0 0.2% between plies 3-4

Table 3.4: Delamination sizes and position in the thickness for the [0 90]3S composite plate

Ply Properties
Ex = 150 GPa

Ey = 11.5 GPa

Gxy = 5 GPa

ν = 0.42

ρ = 1560 kg/m3

tp = 0.188 mm

u0 = v0 = w0 = 0

θx0 = θy0 = 0

u1 = v1 = w1 = 0

θx1 = θy1 = 0

Clamped plate
F1

A1 S1

D

F2

Figure 3.11: Composite clamped plate. Sections where eigenvectors are obtained (F1 and F2). Actuator
(A1). Sensor (S1). Delamination (D).

Thus, 6 delamination sizes and two different positions in the thickness are considered. Their location
in the top-view of the plate can be seen in Fig. 3.11. The delamination is also expressed in terms of
the area of the delamination with respect to the total area of the plate. This percentage is used to
establish two kinds of delaminations: “type 1" and “type 2". The limit is established in 1% of the area
of the plate. The largest delamination of Table 3.4 occupies a 3% of the area of the plate, which is not
a considerable damaged area. The center of the delamination (D) is always at coordinates x = 0.83
m and y = 0.25 m. Two selected sections (F1 and F2) are defined for plotting the results. They could
represent two optical fibers embedded in the plate, where the mode shapes are obtained.
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Damage indexes

Tables 3.5 and 3.6 show some damage indexes (DI) for all the extensions and the two selected sections
of the plate (F1 and F2). The undamaged one is represented by 0. For plates, because of their 2D
behaviour, damage indexes tend to increase but not monotonically. Accordingly, depending on the
mode and selected section, the damage index for displacements could be greater than for curvatures.
As expected, for delamination areas smaller than 1% of the area of the plate (extensions IV, V, VI,
X, XI and XII), higher modes are required to detect the damage. Concerning the position of the
delamination in the thickness, the damage index tends to decrease when the delamination is away
from the center.

Mode Displacement w Curvature κx
I II III I II III

1 0.65 0.24 0.06 0.69 0.26 0.09
2 28.82 11.05 2.90 11.14 4.13 1.07
3 6.80 2.55 0.67 18.29 6.98 1.82

VI V VI VI V VI
16 12.17 3.91 0.75 9.10 2.91 0.56
17 4.61 1.39 0.26 2.19 0.69 0.13
18 7.05 2.17 0.41 34.19 10.52 1.99

VII VIII IX VII VIII IX
1 0.46 0.23 0.13 0.43 0.19 0.09
2 17.86 6.42 1.62 6.75 2.37 0.59
3 4.22 1.49 0.39 11.45 4.06 1.02

X XI XII X XI XII
16 5.57 1.89 0.49 3.91 1.18 0.32
17 2.76 0.87 0.22 1.01 0.40 0.26
18 4.20 1.32 0.26 20.89 6.71 1.31

Table 3.5: Damage indexes DI (%) for displacements w and curvatures κx for section x=0.13 m (F1) of the
composite plate
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b) 0
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Figure 3.12: Eigenvectors of 2-nd mode at section x=0.13 m (F1). Extensions I, II and III. a) Displacements
w. b) Curvatures κx.

52



3. On the Accuracy of a 4-Node Delaminated Composite Plate Element and its Application to
Damage Detection

Mode Displacement w Curvature κy
I II III I II III

1 0.29 0.11 0.03 0.47 0.18 0.07
2 21.68 8.18 2.13 55.35 22.05 5.84
3 7.38 2.72 0.70 3.08 1.06 0.27

VI V VI VI V VI
16 11.43 3.74 0.73 82.85 30.39 6.08
17 3.80 1.15 0.22 5.55 1.67 0.32
18 5.49 1.63 0.31 4.84 1.43 0.27

VII VIII IX VII VIII IX
1 0.16 0.06 0.02 0.24 0.11 0.10
2 13.34 4.71 1.18 35.40 12.85 3.25
3 4.51 1.56 0.39 1.73 0.57 0.22

X XI XII X XI XII
16 5.25 1.80 0.45 42.09 14.75 3.57
17 1.76 0.59 0.21 2.66 1.06 0.66
18 2.96 0.93 0.28 2.06 0.65 0.40

Table 3.6: Damage indexes DI (%) for displacements w and curvatures κy for section y=0.58 m (F2) of the
composite plate
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Figure 3.13: Eigenvectors of 2-nd mode at section y=0.58 m (F2). Extensions I, II and III. a) Displacements
w. b) Curvatures κy.

Figures 3.12 and 3.13 represent the 2-nd eigenvector for both selected sections (F1 and F2) and for
extensions I, II and III. For the rest of the cases no further plots have been included, since the results are
similar. For non-centered delaminations, the eigenvectors are proportional to the one corresponding
to a centered one.

From the experimental point of view, while the very promising optical fibers are still in a develop-
ing process. Fiber Bragg Grating (FBG) sensors are the ones applied most extensively at present.
However they only provide local information. Alternatively, PZT sensors have well known proper-
ties and are mostly used for monitoring structures. From the measured signals, the time-domain or
frequency-domain can be used for damage detection applications. In the next subsection, the damage
is characterized in the frequency-domain through the use of the well known FRF.
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FRF Analysis

FRF is a very effective signal processing technique for detecting damage from vibration signals, re-
quiring only the information from some points where signals are measured, and therefore minimizing
the amount of data to work with. This type of analysis is quite powerful and can detect very small
damage if the selected bandwidth is large enough. It is often used to extract frequencies and mode
shapes. Experimentally, this can be done using PZT elements, which can be used either as actuators
or as sensors. In Fig. 3.11, A1 represents the actuator and S1 the sensor.

Considering the same plate as before, an FRF analysis can be carried out. FRF is defined as:

FRFA1/S1(ω) = H(ω) =
F(w)

F(p)
(3.11)

where A1 is the actuator; S1 the sensor; H(ω) is the Transfer Function of the FEM plate; ω is the
frequency; F denotes the Fourier Transform; w = w(t) are the vertical displacements at the sensor
position and p = p(t) the excitation load.

Since PZT sensors give signals proportional to accelerations, the FRF used for this example will be
computed from the accelerations and not from the displacements. This results in a better function,
since the displacements tend to decrease with frequency. In an experiment the FRF would be obtained
as the division defined in (3.11). For a numerical model, the corresponding FRF can be computed
directly from the model.

In the considered plate, the excitation is at coordinates x = 0.30 m and y = 0.70 m (A1). The
corresponding measured vertical accelerations are at the node of coordinates x = 0.75 m and y = 0.70
m (S1). A damping ratio of ξ=0.003 is assumed for all damping modes.

Figure 5.7 shows the FRF for the undamaged case 0 and all the centered delaminations of Table 3.4
with a selected bandwidth [0, 1500] Hz. Obviously, the differences between curves grow with the
frequency, allowing for the detection of damage. As to be expected, very small delaminations can be
detected in the high part of the bandwidth, where changes in the amplitudes (peaks) with respect
to the undamaged plate clearly occur. Several criteria can be used to classify the damage, such as
frequency shifts, mode shape changes, damage-induced energy, etc. In this case, the frequency and
respective amplitude shifts, extracted from the FRF, are used, here defined as damage indexes. In the
case of the amplitudes, they could be positive or negative, depending on the considered amplitude;
some increase and others diminish. These damage indexes are defined as follows:

DIF =
F0 − F1

F0
; DIA =

A0 −A1

A0
(3.12)

where F and A denote eigenfrequency or amplitude; 0 represents the undamaged plate and 1 the
delaminated one.

For “type 1" delaminations, a close-up of bandwidth is selected, [120-320] Hz, where 5 damage indexes
for eigenfrequencies and their respective amplitudes are computed. For “type 2" ones, the close-up
of the bandwidth selected is [1025-1225] Hz. Analogously, 5 damage indexes for eigenfrequencies and
amplitudes are computed. Table 3.7 shows these damage indexes. As expected, higher frequencies are
required to detect very small delamination sizes.

Figure 3.15 shows the close-up of the bandwidth where the damage indexes are computed. As is well
known, eigenfrequencies tend to decrease with the presence of damage. Exceptionally, and for higher
modes, some of them can increase, resulting in a negative damage index (see eigenfrequency: 1139
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Hz in Fig. 3.15b The results show that frequency changes are not very significant, while amplitude
changes are more sensitive to the presence of damage.

From these results it can be concluded that damage may be detected with a relatively small band-
width. Damage indexes of amplitudes are more sensitive, as is the case of modal shapes. For very
small delaminations, higher frequencies are required. While the damage indexes of amplitudes are ap-
preciable in the high part of the bandwidth, the damage indexes of eigenfrequencies tend to decrease
along with delamination size (see Table 3.7).

a)

FRF

0 I II III

b)

0 250 500 750 1000 1250 1500
(Hz)

0 IV V VI

Figure 3.14: FRF at location x = 0.75 m and y = 0.30 m. a) Extensions 0, I, II, III. b) Extensions 0, IV, V
and VI.

Eigenfrequency (DIF ) Amplitude (DIA)
Extension 200.2 207.6 212.2 228.6 256.0 (Hz) 200.2 207.6 212.2 228.6 256.0

I 2.80 3.32 1.98 1.75 1.45 67.92 94.14 -34.66 -78.00 11.28
II 0.90 0.96 1.46 1.09 0.43 17.87 17.23 -32.43 -51.54 8.48
III 0.20 0.34 0.57 0.44 0.12 0.36 4.88 -11.11 -18.59 -3.25

Extension 1051 1072 1086 1119 1199 (Hz) 1051 1072 1086 1119 1199
IV 0.00 0.19 0.28 0.63 0.17 -13.51 -4.69 10.26 8.95 34.57
V 0.05 0.09 0.09 0.36 0.08 -6.87 -3.03 3.19 -1.33 18.58
VI 0.10 0.09 0.00 0.09 0.00 -0.15 -0.78 0.38 -0.22 5.36

Table 3.7: Damage indexes DIF and DIA (%) for selected Eigenfrequencies: 200.2, 207.6, 212.2, 228.6 and
256.0 (Hz) for extensions I, II and III; 1051, 1072, 1086, 1119 and 1199 (Hz) for extensions IV, V and VI

55



3.5. Conclusions and further work

Selected bandwidths to compute damage indexes (DI)

a)

120 320(Hz)

0 I II III

b)

1025 1225(Hz)

0 IV V VI

Figure 3.15: Selected bandwidths of FRF (to compute damage indexes). a) Extensions 0, I, II, III. b)
Extensions 0, IV, V and VI. Marked eigenfrequency: 1139 Hz.

3.5 Conclusions and further work

In this paper a methodology for defining delaminations is used to develop a 4-node delaminated com-
posite Finite Element. Based on similar approaches to FEM, the accuracy of this methodology was
tested. Relative errors of the L2-Norm for the developed element were studied for 2 Benchmark
problems and compared with the case of considering the fracture with separate elements (“4 Region
Approach"). Similarly, relative errors in the first eigenfrequencies were compared for both formula-
tions. The conclusion is that the two formulations provide the same results regardless of the selected
mesh, confirming this formulation as a better means of model delamination.

It has also been proven that this methodology leads to elements that always pass the “Patch Test" if
the selected FEM elements used to build the delaminated one (DKQ and QMITC in this case) also
pass the “Patch Test" for the uncoupled single problems. In future work, the authors plan to extend
this methodology to HOT elements for composite shells with other uncoupled FEM formulations, as
a generalization of the fracture model.

Finally, some results in the field of SHM have been presented for beams and composite plates, studying
the effect of delamination on some of the dynamic damage indicators used in the damage detection
techniques, reconfirming some known relationships between them, and presenting the developed ele-
ment as a tool for model based strategies.
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Chapter 4

Experimental analysis of orthotropic
composite plates. Comparison with
numerical results

This chapter describes experiments performed in three composite orthotropic plates of stack-
ing sequence [0 90]3S. Two of these plates present an internal delamination in the mid-
surface of two different sizes. FRF analysis were carried out and compared for the three
plates. Results show how the FRF analysis can be a powerful tool to detect the delamina-
tion. However, the experiment showed some limitations due to the variability associated
with the experiment itself. Additionally, the same plates were studied with the numerical
method developed in Chapter 3, obtaining similar results from a qualitative point of view.

4.1 Introduction

The use of advanced composite materials has grown in recent decades. From the structural point of
view, their stiffness, weight, fatigue-life and strength limit make this kind of material very attractive.

It is well known that the delamination or debonding of adjoining plies is one of the most frequent
types of damage in composite structures. This modifies the carrying capacity of the structure and
can lead to catastrophic consequences if they are large enough. Therefore, delamination detection is
an important issue in the maintenance tasks.

In the context of SHM, several damage identification methods based on the change of eigenfrequencies,
mode shapes, damping ratios, FRF, etc., have been used to identify and evaluate damage. This
challenge is usually subdivided into four levels of damage [32] (I: detection, II: localization, III: severity
and IV: remaining life). Improvements in terms of location (levels II and III) can be performed by
the use of modal shapes, the curvature shapes being more powerful than displacement ones. All
the identification techniques involve a compromise between the severity of damage and the number
of modes required to be able to detect damage. Interested readers can find detailed information
in [33, 34, 35, 36, 37, 68].

Zak et al. [44, 45] studied the vibration of delaminated composite beams and plates. Changes in
eigenfrequencies were validated in a finite element model and experimental data. Hanagud and Luo
[46] studied a composite plate based on measured structural dynamic response. Analytical models
were constructed to predict the dynamic response of the damaged structure, based on the computation
of appropiate damage indexes, obtained from the mode shapes. The influence in frequency shifts and
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FRF due to debonding on sandwich panels was studied by Kim and Hwang in [47] with good agreement
with numerical results. Krawczuk et al. [48] identified and locate damage in a laminated composite
beam using frequency shifts as inputs. The model was validated with numerical tests. Ling et al.
in [49] used fiber-optic sensors to measure FRF, which is used to detect and identify the size and
location of delaminations in composite beams. Results were also validated with a numerical model.
Sanders et al. in [51, 52] discussed the subject of detecting delamination within composites with
neural networks. Fiber-optic sensors were used to measure the first five modal frequencies of several
glass/epoxy composite beams. Harrison and Butler used a genetic algorithm to locate delamination
on beams in [53] using frequency shifts and mode shapes. Zwink have located damage in composite
specimens due to impact loads with vibration-based techniques considering the non-linear response
in [55]. Finally, Saravanos and Hopkins studied in [56] the change of damping ratios in cantilever
composite beams and compared the results with numerical simulations.

In this work, damage (delamination) is identified for two composite plates through the use of FRF
analysis. Experimental results are also compared with numerical simulations based on the delaminated
element developed in [68].

4.2 Description of the composite SEDA plates and the experiment

As part of the Project “Application of advanced signal processing techniques to damage detection
and characterization (SEDA)", three composite plates were fabricated by INTA (Instituto Nacional
de Técnicas Aeroespaciales) in Madrid. All of them were orthotropic plates of stacking sequence [0
90]3S , called SEDA plates. The experimentation and numerical analysis was funded by the Project
P08-TEP-03641, “Detección de defectos en materiales compuestos avanzados de uso aeronáutico me-
diante técnicas vibro-acústicas y modelos de optimización (DEMAC)”. The mentioned plates have the
following ply properties:

• Thickness 0.188 mm;

• Ex=150 GPa;

• Ey=11.5 GPa;

• Gxy=5.0 GPa;

• νxy=0.42 GPa;

being the total thickness of the plate 2.256 mm.

Two of these plates presented an internal delamination between layers 6 and 7 (mid-surface). In the
first case (plate 5S2/2) the delamination size was 80x80 mm, whereas in the second case (plate 5S2/3)
the size was 180x180 mm. In order to ensure the debonding between the plies a thin teflon was placed
between both plies. The plate (5S2/1) represents the undelaminated plate. Figure 4.1 presents the
geometry of the plates and the delamination sizes.

The performed experiment consisted on the vibration of these plates in a fully clamped configuration.
For that a special steel frame was designed and built to be able to fix the plate through a system
of screws. A pair force of 55 N·m was applied to ensure that the plate was clamped along the 4
edges. Once the plate was inside the frame, the clamped dimensions of the plate were 850x650 mm.
Additionally, an anti-vibration table was used to avoid ground vibrations. In Figure 4.2 both frame
and table can be seen.

A electric signal generator of the PULSE-System from Brüel and Kjaer was used to excite the plates
through a piezoelectric element (PZT) used as actuator (A1). Additionally, two PZT sensors (S1, S2)
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Figure 4.1: SEDA [0 90]3S composite plates.
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4.2. Description of the composite SEDA plates and the experiment

registered the electric signals due to the vibration of the plate, which were finally recorded and digi-
talized by the PULSE-System. Figure 4.2 shows the complete experiment setup. Detailed information
of the PULSE-System, the instrumentation methodology and PZT characteristics can be found in [69]
and [70].

Figure 4.2: PULSE-System and SEDA plate on the steel frame instrumented with one actuator and two
sensors.

Concerning the composite plate, it was instrumented with an actuator (A1) and two sensors (S1, S2),
which were connected to the PULSE-System through convenient connections boxes manufactured by
the personal of the SNADS group. Figure 4.3 shows the PZT used as actuator and sensors, which were
the same type, both in size and properties. Table 4.1 describes the properties of this PZT element.

Model Ceramic Electrodes Geometry Diameter Thickness
PRYY+0796 PIC255 Ag Circular 20 mm 0.5 mm

Table 4.1: PZT used as Actuator and Sensor.

The positions of the actuator (A1) and sensors (S1, S2) are described in Figure 4.4. All of them were
placed away from the delamination to present a more general case of study. For the sake of brevity, in
this chapter only the response of sensor 2 is presented, since results using sensor 1 were quite similar.
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Figure 4.3: PZT used as Actuator and Sensor.
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Figure 4.4: Actuator and sensor positions. Clamped dimensions. All data in mm.

4.3 Experiment

For all the experiments performed the following characteristics were used:

• A random white-noise as excitation signal;

• Sampling frequency [0 8192] Hz;

• Frequency excitation range of [0 6400] Hz;

• Measurement length 32 s;

• Analized bandwidth [0 3500] Hz.

These properties were set in the software of the PULSE-System and finally the actuator and sensors
signals were recorded in the computer. It is important to keep in mind that once signals are registered,
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4.4. Experiment variability

they must be normalized, due to different issues concerning the instrumentation, such the use of
different PZT elements and the effect of the used glue to fix the PZT. In particular, signals were
normalized by equation (4.1), resulting in a signal of mean zero and standard deviation one, i. e.

xN =
x− x
σ

(4.1)

where xN is the normalized signal, x represents the mean of the signal, x is the recorded signal and
σ the standard deviation of the recorded signal.

4.4 Experiment variability

As it was already pointed out, the experiments were performed on three different plates, therefore
some variability and limitations had to be expected. In order to proof that the instrumentation of
each single plate and that the PULSE-System did not present any variability, all the plates were tested
over a foam several times at different days, obtaining a variability of results close to zero. Figure 4.5
shows one of SEDA the plates over the foam.

Figure 4.5: SEDA plate over foam.

Figure 4.6 shows the FRF’s of three different experiments performed at several days. The three
different FRF of this correspond to the undelaminated plate over the foam (see Figure 4.5) and have
practically the same response. Therefore no variability of the instrumentation system was observed.
Similar results were obtained in the other plates, but for the sake of simplicity, only results for the
undelaminated plate are presented here.
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Figure 4.6: Variability of instrumentation system for undelaminated plate.

In order to test the variability of the fixation system and the fact that the instrumentation of the three
plates and the plates themself were different (different PZT, the exact position of the PZT in three
different plates, etc.), the plates were disposed several times and the screws were adjusted several
times on the frame. As a result of these experiments a variance for the frequency response of about
1-3 Hz for the lower frequencies and about 5 Hz for the highest ones were founded. Figure 4.7 presents
the six different experiments, where a small variation of the FRF can be appreciated. For clarity, the
bandwidth has been divided in two plots, one from [0 1500] Hz and the other from [1500 3500] Hz.
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Figure 4.7: Variability of the FRF for the undelaminated clamped plate.

So for this experiment, an error depending on the frequency between 1-5 Hz was assumed. In this
case, a total number of six experiments were performed, three performed in one day and three in other
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4.5. Experimental results
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Figure 4.8: Variability of the FRF for the undelaminated clamped plate. Frequency band [350 500] Hz.

day. At each of these three experiments, the screws were adjusted again to the pair force of 55 N·m
in order to introduce the variability associated with the boundary conditions. It is important to keep
in mind that before every experiment was performed, plates were free of in-plane stresses associated
of temperature changes, since the pair force was set to zero and adjusted to the maximum pair force.

Despite the fact that the signals were normalized, amplitudes of the FRF can not be strictly compared
since the instrumentation was not exactly the same for the three plates and the fact that the colocation
of the PZT can present some differences (in position and amount of glue). In Figure 4.8 a closer look
to the different FRF was made. Variabilities of about 50% in the linear scale or more were founded.
It was then really difficult to set a clear variance for the amplitudes and therefore they should be only
taken into account if the differences are quite considerable.

4.5 Experimental results

Once a magnitude of the frequency variability was fixed, the experiments of the three different plates
were performed, in order to study the possibility of damage identification with the use of FRF. The
same excitation characteristics described before (section 4.3) were used for all the experiments.

In the following figures, FRF of the undelaminated plate is compared with the FRF of both de-
laminated ones. For clarity, it has been separated the 80x80 mm delamination of the 180x180 mm
delamination. Also for clarity, the studied bandwidth has been divided in two bands; [0 1500] Hz and
[1500 3500] Hz.

Firstly, Figure 4.9 shows the effect of the delamination of 80x80 mm in the SEDA composite plate.
It can be seen how higher frequencies are required in order to clearly distinguish the effect of de-
lamination, for amplitudes and frequencies. For frequencies greater than 1500 Hz the effects of the
delamination were quite considerable. For frequencies lower than this value, not every frequency shift
between delaminated and undelaminated plates was clearly identifiable since it was in the range of
the variability of the experiment. However some of them were noticeable. In the next section of this
chapter a closer look to the first bandwidth is performed.

Secondly the results for the plate with a delamination of 180x180 mm are presented in Figure 4.10.
Here for all the frequencies the differences were quite considerable, pointing out this delamination as
easily identifiable. However, this is a large delamination for the purpose of aeronautical applications
and therefore the results can be taken into account in order to proof the damage detection technique,
but maybe not for practical issues.
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Figure 4.9: FRF of the undelaminated and 80x80 mm delamination plates.

Results point out the following conclusions:

• In order to detect the small delamination (80x80 mm), higher frequencies are required (>1500
Hz in the used plate).

• The delamination of 180x180 mm is easily detectable in all the bandwidth.

• A generalized tendency of diminishing natural frequencies of the plate due to damage (but not
everyone) is appreciated.

As expected, higher frequencies were required in order to detect small delaminations. This is however
a well known result in the field of SHM. If no scale influence is assumed, the small delamination would
be about 40-50 mm in an aeronautical panel, since the considered clamped plate was of 850x650 mm.

65



4.6. Comparison with numerical results
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Figure 4.10: FRF of undelaminated and 180x180 mm delamination plates.

4.6 Comparison with numerical results

The performed experiments were also studied from a numerical point of view with a numerical model,
developed in [68]. This model is based on a CLT theory which introduces the delamination in the
kinematic equations through the following expression:

u(x, y, z) = u0(x, y) + θy0(x, y)z +

nd∑
r=1

[
ur(x, y) + θyr(x, y)z

]
H(z − zr)

v(x, y, z) = v0(x, y) + θx0(x, y)z +

nd∑
r=1

[
vr(x, y) + θxr(x, y)z

]
H(z − zr)

w(x, y, z) = w0(x, y) +

nd∑
r=1

[
wr(x, y)H(z − zr)

] (4.2)

where u, v, and w are displacements; θx and θy are rotations; H is the Heaviside step function; the
subscript 0 indicates mid-plane quantities and nd is the number of delaminations considered. Variables
with subscript r are the new degrees of freedom describing the kinematic discontinuities across the
r-th delamination. These new variables represent relative displacements and rotations between plies.
Further details on the element formulation can be found in [68].

Figure 4.11 shows the finite element model of the plate for the 80x80 mm delamination. The mesh is
of 170x130 elements.
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4. Experimental analysis of orthotropic composite plates. Comparison with numerical results

Figure 4.11: Finite element model of the delaminated plate. Delamination 80x80 mm.

In general the influence of the delamination was quite similar for both cases, although theoretical and
experimental results does not fit, for multiple reasons (used composite theory, variability of geometric
parameters and elastic parameters, contact and friction effects, etc.).

However, the experiments validate what the theory predicted and show also the limitations of the
Finite Element Method in order to perform damage detection strategies based on models. They
should only be used from a comprehensive point of view in this field.

The numerical study was performed twice. Firstly, with the composite values given in 4.3; secondly,
with an inverse optimization of the parameters in order to have a better approach of the numerical
solution.

4.6.1 Comparison with the given parameters

As in the previous section, the effect of the two delamination sizes was studied separately. Figures
4.12-4.14 shows the effect of the delamination of 80x80 mm in the SEDA composite plate. In this
case however results are presented in three separated bandwidths: [0 500] Hz, [500 1500] Hz and [1500
3500] Hz. The first bandwidth, is from a comprehensive point of view the most interesting one, since
a really high similarity between experimental and numerical FRF’s can be found. However several
assumptions make that the results can not fit as it was already mentioned (used composite theory,
variability of geometric parameters and elastic parameters, contact and friction effects, etc.).

It was found that for frequencies lower than 1500 Hz, only some of the frequency shifts due to
delamination in the numerical result were quite noticeable and greater than the variability of the
experiment. Something similar happened with the amplitudes of the FRF, but at some of the resonant
peaks, both frequency shifts and amplitudes changes between delaminated an undelaminated plates
were big enough to identify the delamination. From a practical point of view, as was pointed out
before, it would be better to work up to 1500 Hz in order to detect damage, but model and experiment
unfortunately lose similarity as the frequency increases.

Regarding the damping, a viscoelastic linear damping ratio of value ξ=0.005 for the first eigenfrequency
to ξ=0.01 for the highest one was assumed. Values under ξ=0.01 practically do not modify the natural
frequencies and only modify amplitudes. In this chapter, the main interest is focused on the comparison
of the eigenfrequencies. Considering the adopted model, no influence at this level should be expected.
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Figure 4.12: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [0 500] Hz.
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Figure 4.13: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [500 1500] Hz.

A peak in the frequency 50 Hz (and multiples for low frequencies) can be appreciated in the experi-
mental results. This is due to the electric signal and therefore must not be taken into account, since
it is not corresponding to any eigenfrequency of the plate.

Secondly the effects delamination of 180x180 mm are compared in Figures 4.15-4.17. For this case the
delamination is easily identifiable from frequency shifts and amplitude changes. Similar results for
numerical and experimental results were found, although not for all the natural frequencies happens
the same. Higher differences were founded, specially in the first bandwidth [0 500] Hz for the numerical
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Figure 4.14: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [1500 3500] Hz.
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Figure 4.15: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [0 500] Hz.

one (most likely due to the delamination model does not consider any possibility of contact or friction
between the debonded surfaces). However, in general the relatives changes between numerical and
experimental FRF’s are similar from a qualitative point of view.
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Figure 4.16: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [500 1500] Hz.
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Figure 4.17: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [1500 3500] Hz.
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4.6.2 Comparison with the inverse optimized parameters

It was also found that if some elastic and geometric parameters are modified, a better approach
between theoretical a experimental results could be obtained. Since the ply thickness and Ex moduli
are the most sensitive parameters [3], an inverse optimization procedure was performed in order to
have a better approach between simulation and experimental results. It has to be kept in mind that
this problem has multiple solutions and that the solution may give some unrealistic solutions from
a physical point of view. However, for the purposes of this work an approach was performed taken
into account the bandwidth [0 500] Hz. In this case a ply thickness of 0.2 mm and an elastic moduli
Ex=100 GPa were used. Figure 4.18 shows the numerical eigenfrequencies in the bandwidth [0 500]
Hz after being fitted. Figure 4.19 shows both FRF’s. The correlation between them is 0.9998. Table
4.2 presents both natural frequencies and their respective differences.

0 5 10 15

Numerical and Experimental natural frequencies

Experimental Fitted

Figure 4.18: Numerical fitted frequencies at the frequency band [0 500] Hz. First 17 eigenfrequencies.
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Figure 4.19: Experimental and numerical FRF over the bandwidth [0 500] Hz.

After optimization, numerical and experimental FRF’s are presented again in Figures 4.20-4.24 having
them a more similar behaviour. Another result to be aware of is that numerical solutions tend also to
be more inaccurate as the frequency increases, since the FEM model requires a more refined mesh in
order to study very high frequencies. In this study about 300 modes were computed. For this reason
bandwidths [0 500], [500 1000] and [1000 1500] are analized.

In order to obtain a magnitude order of the predicted frequency shifts from both analysis, theory
and experiment, the most significant frequencies were compared from both FRF’s, obtaining similar
results. It has to be pointed out that not all the frequency the shifts were so similar, although an
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4.6. Comparison with numerical results

Mode Exp. Natural Freq. (Hz) Num. Natural Freq. (Hz) Difference (Hz)
1 38.5 40.25 1.75
2 72.6 72.6 0
3 89.2 92.2 3
4 112.5 113.9 1.4
5 130.2 129.2 -1
6 159.6 160.7 1.1
7 170.5 174.3 3.8
8 188.4 190.4 2
9 209.8 207.2 -2.6
10 223.5 225.8 2.3
11 233.8 230.8 -3
12 285.9 285.8 -0.1
13 297.1 297.9 0.8
14 324.8 326.6 1.8
15 375.4 375 -0.4
16 446.6 441.2 -5.4
17 486.5 480.2 -6.3

Table 4.2: Experimental and numerical natural frequencies with the optimized parameters.
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Figure 4.20: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [0 500] Hz.

acceptable general similar behaviour was observed. It also has to be kept in mind that the experimental
error was fixed in a range of 1-5 Hz, increasing with the frequency.

As it was suggested in the previous subsection, contact and friction effects were not considered in the
FEM models. This would explain why the numerical solution is more flexible than the experimental
one, specially for the 180x180mm delamination. Although contact and friction effects should increase
with the frequency, the fact that real amplitudes are almost neglectable from above the first modes
(almost the total amount of energy is absorbed by the first modes) it makes that this effect tend to
diminish as the frequency does. This is in agreement with the numerical and experimental results.
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Figure 4.21: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [500 1000] Hz.
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Figure 4.22: Numerical and experimental comparison for undelaminated and 80x80 mm delamination plates
over the bandwidth [1000 1500] Hz.

Finally, for both numerical analysis, that is, with the given parameters of the plates and fitted ones
(Ex and ply thickness) frequency shifts were compared, giving them both similar results.

Table 4.3 summarizes the frequency shifts due to the delamination obtained from the experiments and
the ones obtained from the numerical analysis:

As it can be seen, they are in good agreement, despite the limitations previously mentioned.
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Figure 4.23: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [0 500] Hz.
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Figure 4.24: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [500 1000] Hz.
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Figure 4.25: Numerical and experimental comparison for undelaminated and 180x180 mm delamination
plates over the bandwidth [1000 1500] Hz.

Experimental Shifts Numerical Shifts
80x80 mm 180x180 mm 80x80 mm 180x180 mm

[0 500] Hz 1-3 Hz <10 Hz 1-3 Hz <20 Hz
[500 1000] Hz <10 Hz <20 Hz <10 Hz <25 Hz
[1000 1500] Hz <10 Hz <20 Hz <10 Hz <25 Hz
[1500 3500] Hz <25 Hz <40 Hz - -

Table 4.3: Most significant frequency shifts due to delamination for experimental and numerical (optimized)
analysis.

4.7 General conclusions

In this chapter experiments on three composites plates, two of them with an internal delamination
of different size were studied. Effectiveness of FRF analysis in order to identify the presence of
delamination was performed. Results were also studied and compared with a numerical model.

The following conclusions can be pointed out, some of them well known in the SHM field:

• The experimental setup does not introduce variability (it is close to zero).

• The use of three different plates, and the use different PZT sensors with different amount of glue
on each plate and the support system result in a variability of 1-5 Hz for the frequencies.

• It was difficult to set a regular variance for amplitudes in the FRF’s. However noticeable changes
in them can also identify damage.

• Delamination is identifiable through FRF analysis, and it is a matter of increasing the bandwidth
to work with, to be able to detect small delaminations.

• No contact and friction effects have been considered in the numerical solution, obtaining greater
frequency shifts due to delamination specially for the 180x180 mm delamination, and in the first
analized bandwidth [0 500] Hz.

75



4.7. General conclusions

• Numerical results point out similar frequency shifts due to delamination.

• Model based methods should be used in a comprehensive way for damage detection techniques.

• FRF analysis and the very promising optical fibers sensors could be an effective way to identify
delaminations in SHM context of real structures.
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Chapter 5

Modal Analysis of Delaminated Composite
Plates using the Finite Element Method
and Damage Detection via combined
Ritz/2d-Wavelet Analysis

In this chapter the following paper is presented: “Modal Analysis of Delaminated Compos-
ite Plates using the Finite Element Method and Damage Detection via combined Ritz/2d-
Wavelet Analysis” published in the Journal of Sound and Vibration. in 2013, with doi:
http://dx.doi.org//10.1098/rsta.2000.0717. The contribution of the author was providing
some FRF analysis of the delaminated element developed in chapter 3. Some eigenval-
ues results for delaminated plates were also provided in order to test a damage detection
technique, from a theoretical point of view.

Abstract

Structural studies to find defects (in particular delaminations) in composite plates have been very
prevalent in the Structural Health Monitoring field. The present work develops a new method to
detect delaminations in CFRP (Carbon Fiber Reinforced Polymer) plates. In this paper the method is
validated with numerical simulations, which come to support its adequacy for use with real acquisition
data. This is done firstly through the implementation of a delaminated plate finite element. Using the
classical lamination plate theory, delamination is considered in the kinematic equations through jump
functions and additional degrees of freedom. The element allows the introduction of nd delaminations
through its thickness. Classical QMITC (Quadrilateral Mixed Interpolation Tensorial Components)
and DKQ (Discrete Kirchhoff Quadrilateral) elements are used for the membrane and bending FEM
(Finite Element Method) formulation. Second, using the vibration modes obtained with the FEM, a
damage location technique based on the variational Ritz method and Wavelet Analysis is proposed.
The approach has the advantage of requiring only damaged modes and not the healthy ones. Both
FEM simulations and Ritz/Wavelet damage detection schemes are applied in an orthotropic CFRP
plate with the stacking sequence [0/90]3S. In addition, the influence of delamination thickness position,
boundary conditions and added noise (in order to simulate experimental measures) was studied.

Keywords : Delamination; FEM; Structural Health Monitoring; Damage detection; Ritz method;
Wavelet Analysis
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5.1. Introduction

5.1 Introduction

The use of CFRP (Carbon Fiber Reinforced Polymer) has grown in recent decades by virtue of its
properties. Having started within the aerospace industry, it is now widely used in other engineering
applications. From the structural point of view, its stiffness, weight, fatigue-life and strength limit
make this material very attractive.

Delamination or debonding of adjoining plies is one of the most frequent types of damage in composite
structures. It must be taken into account, because its presence modifies the carrying capacity of the
structure. It may originate in manufacturing itself, or during service-life due to fatigue or impact.
Because delamination is difficult to detect, in recent years several research lines have aimed to develop
efficient methods for its detection. Model based methods [33] have been developed to avoid, when
possible, the in-situ inspection of a structure, since they can provide information about the presence
of damage based on the combination of a measured response and a numerical model.

A review of the models developed to investigate delamination can be found in Ref. [33] and more
recently in Ref. [57]. The present paper classifies the delamination models in view of the laminate
composite theory used and the damage model.

The main laminate composite theories, derived from the general elasticity theory, are:

• Equivalent Single Layer models;

• Layerwise models;

• 3D models.

The first of these were based on the so-called Equivalent Single Layer theory (ESL), resulting in the
Classical Laminate Theory (CLT) for thin plates, First-Order Shear Deformation Theory (FSDT)
for thick plates and Higher Order Theories (HOT) as a generalised ESL theory. The need to focus
interest on the layer level, in order to study interply stresses, led to Layerwise theories (see Ref. [3]).
Full Layerwise theories have a layer-by-layer piecewise approximation, whereas the partial Layerwise
theories (zig-zag) are a particular case of an ESL with continuity in the interply stresses, offering a
good balance between accuracy and time-consumption. Finally, for some applications the problem
can be solved using the standard 3D theory of elasticity, but it is very time-consuming and normally
used for certain local problems.

It is important to stress that only static conditions of delamination (a constant size over time) are con-
sidered in this paper, since the purpose is to detect an existing delamination through an FEM model,
which is supposed to be of certain dimensions. However, other models based on 3D elasticity [71, 72]
and Interface Elements [73] have been applied to study the progression of delamination.

From the perspective of damage, two possibilities can be applied:

• “4 Region Approach”;

• Considering the delamination in the equations of the problem.

In most models, delamination is taken into account using the so-called “4 Region Approach” (see
Refs. [33, 57]). This assumption physically separates the model into four different elements that are
connected properly at the nodes. The other way to consider delamination is in the equations of the
problem; then, properly defining new kinematic equations, the delamination can be modeled.

Different authors have approached this technique through the use of jump functions with a Heaviside
function. New degrees of freedom appear as a result of this assumption.

In recent years similar delamination models have been described. Reference [59] studies the buckling in
composite cylindrical shells under axial compression through the “4 Region Approach”. Reference [74]
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studies the buckling of composite shells with multiple delaminations based on a higher order zig-zag
theory that includes the delamination in the kinematic equations. Reference [75] studies the vibration
of shells using the “4 Region Approach”.

Concerning the interaction between the two delaminated surfaces, contact forces were not taken into
account since they would be negligible for the lower modes and delamination sizes considered in this
paper (the opening is around 10−13 times the maximum displacement of the considered mode). Some
previous research [56, 44] addresses this issue in the case of composite beams. These studies concluded
that contact forces modify the response only for delamination sizes larger than 10%-30% of the beam.
In the case of plates, owing to the 2D behaviour, the influence of contact would be even smaller than
in beams. We should stress that only lower modes were considered in this paper, for which reason
such influence is virtually negligible.

As is well known, delamination produces changes in the structural properties, and in particular the dy-
namic ones. Because stiffness and damping are modified (decrease and increase, respectively), several
dynamic parameters such as frequency, mode shape, damping ratio, etc. can be studied in order to
detect the delamination location and extent. Many of the damage detection methods involve vibration
test techniques that are based on the assumption that damage modifies the physical characteristics
of the material. Because the natural frequencies and vibration modes change substantially with re-
spect to the undamaged material, they can be used to develop approaches for damage detection and
evaluation. The reader can find most of the damage detection techniques in [34, 35, 76].

On the other hand, Wavelet Analysis has been widely used to detect damage both in beams and plates
(see e.g. Refs. [77, 78, 79, 80, 81, 82]). It generally calls for modal information regarding the healthy
structure, which may not be available in some practical situations. In contrast, some papers (see
Refs. [78, 79]) have proven the effectiveness of the use of new wavelet approaches to develop damage
indexes in which the modal information of the undamaged structure is not needed. Such approaches,
applied to beams, are based on the use of the Wavelet Transform to approximation functions of the
damaged modes as well as the undamaged ones.

In this context, we propose a new damage location index based on the combined use of the 2D
Continuous Wavelet Transform (CWT) and the variational Ritz method on the damaged modes (the
application of the Ritz method to damaged plates is developed in works such as Refs. [83, 84, 85, 86]).
The transversal displacement modes of the damaged plate are approximated by a product series of
functions compatible with the boundary conditions as under the classical Ritz method work [87],
generating new modes to be used as undamaged modes. The damage index is thus defined as the
difference between the CWT of the damaged modes and the new ones.

The damage detection approach put forth here has been tested with an orthotropic CFRP plate
with stacking sequence [0/90]3S in which six extensions of delamination –at the same position but
with different extension– were generated via the FEM simulation proposed. The six extensions were
thickness-localised in the midplane, and for one case the influence of the thickness position was studied.
The approach makes it possible to reach Level 2 of SHM, i.e. as far as the location of damage.

5.2 Delamination model

5.2.1 Kinematic delamination equations

One relevant aspect of this paper is the effect of the delamination size on mode shapes, with de-
tectability achieved through the Wavelet Transform. For this purpose, an ESL finite element based
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on CLT was developed. Delamination was considered through kinematic equations which, according
to Ref. [56], can be written as:

u(x, y, z) = u0(x, y) + θy0(x, y)z +

nd∑
r=1

[
ur(x, y) + θyr(x, y)z

]
H(z − zr)

v(x, y, z) = v0(x, y) + θx0(x, y)z +

nd∑
r=1

[
vr(x, y) + θxr(x, y)z

]
H(z − zr)

w(x, y, z) = w0(x, y) +

nd∑
r=1

[
wr(x, y)H(z − zr)

]
(5.1)

where u, v, and w are displacements; θx and θy are rotations; H is the Heaviside step function;
the subscript 0 indicates midplane quantities of the lower delaminated subsection. Variables with
subscript r are the new degrees of freedom describing the kinematic discontinuities across the r-th
delamination. These new variables represent relative displacements and rotations between plies; nd is
the number of delaminations considered.

Figure 5.1 shows the kinematics of the r-th delamination at the ply level.

r-th
DELAM.

u0,θ0

ur,θr

w0

wr

Figure 5.1: Kinematics of delamination [56]

The CLT of an undelaminated plate relates internal forces/moments N0 and M0 with in-plane strains,
ε0 and κ0:

{
N0

M0

}
=

[
A B
B D

]{
ε0
κ0

}
(5.2)

where:

N0 =

Nx
Ny
Nxy

 , M0 =

Mx

My

Mxy

 , ε0 =

 εx0

εy0

εxy0

 , κ0 =

 κx0

κy0

κxy0

 (5.3)

A is the membrane stiffness matrix, D the bending stiffness matrix and B the coupling matrix, all of
them with reference to the laminate midplane.
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Using the kinematic equations (5.1), an analogue to Eq. (5.2) can be obtained for a laminate with nd
delaminations:



N0

N1

.

.
Nnd

M0

M1

.

.
Mnd



=



A A1 . . And B B1 . . Bnd

A1 A11 . . A1nd B1 B11 . . B1nd

. . . . . . . . . .

. . . . . . . . . .
And A1nd . . And Bnd B1nd . . Bnd

B B1 . . Bnd D D1 . . Dnd

B1 B11 . . B1nd D1 D11 . . D1nd

. . . . . . . . . .

. . . . . . . . . .
Bnd B1nd . . Bnd Dnd D1nd . . Dnd





ε0

ε1

.

.
εnd
κ0

κ1

.

.
κnd



(5.4)

where Arr = Ar, Brr = Br for r = 1, 2, ..nd; N0 and M0 are the resultant internal forces and moments
of the laminate section, and Nr and Mr the internal forces and moments of the partial section (above
the r-th ply). New degrees of freedom entail new internal forces/moments and strains, i.e.

N0 =

∫ h/2

−h/2

σx
σy
τxy

 dz , M0 =

∫ h/2

−h/2

σx
σy
τxy

 z dz (5.5)

Nr =

∫ h/2

−h/2

σx
σy
τxy

 H(z − zr)dz , Mr =

∫ h/2

−h/2

σx
σy
τxy

 z H(z − zr)dz (5.6)

Ar =

n∑
p=1

∫ zp

−zp
Qp H(z − zr)dz , Br =

n∑
p=1

∫ zp

−zp
Qp z H(z − zr) dz (5.7)

Dr =

n∑
p=1

∫ zp

−zp
Qp z

2 H(z − zr)dz , Ars =

n∑
p=1

∫ zp

−zp
Qp H(z − zr)H(z − zs) dz (5.8)

Brs =

n∑
p=1

∫ zp

−zp
Qp z H(z − zr)H(z − zs)dz (5.9)

Drs =

n∑
p=1

∫ zp

−zp
Qp z

2 H(z − zr)H(z − zs)dz (5.10)

where n is the number of plies and Qp is the reduced stiffness of the p-th ply.
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5.2.2 FEM Formulation

The formulation presented in Section 5.2.1 was used to develop a delaminated Finite Element. These
new degrees of freedom represent the relative displacements in the delamination. The element allows
nd delamination in its thickness. For the purpose of this paper only one delamination was considered,
resulting in a 4-node quadrilateral element, with 10 d.o.f. per node, five of them being the new degrees
of freedom associated with the delamination.

The element requires 2·nd deformation matrices in order to interpolate εr and κr. Since these strains
have the same structure as ε0 and κ0, the element can be built using only two single finite element
formulations, each one applied to the extensional (sliding) and bending (opening and relative rota-
tion) d.o.f. of the r delamination. One is the membrane formulation, modeled using the QMITC
(Quadrilateral Mixed Interpolation Tensorial Components) element [65], and the other is the bending
formulation, modeled with the DKQ (Discrete Kirchhoff Quadrilateral) element [66].

5.3 Semianalytical solution for the plate modes

The Ritz method [87] is a semianalytical method used to calculate frequencies and modes of vibration
of a plate. It is based on the calculation of the potential energy U and the kinetic energy T . The
method supposes that the transversal displacement w can be expressed as a function product series
with the corresponding function weights, i.e.

w(x, y) =

M∑
m=1

N∑
n=1

AmnXm(x)Yn(y) (5.11)

where Amn are the function weights, M and N are the summation number of terms (usually M = N)
and Xm(x), Yn(y) are functions that satisfy the boundary conditions at x = (0, a) and y = (0, b). In
this work, the boundary condition compatible functions described in Ref. [88] are used.

To obtain the vibration modes of the plate, U − T must be minimised, i.e.

∂(U − T )

∂Amn
= 0 (5.12)

Using Eq. (5.12) with all Amn parameters, a set of M ·N equations is obtained, expressed in matrix
form as

{F−Gω2}Amn = 0 (5.13)

where F and G are M ·N side square matrices, ω the angular frequency and Amn is the vector of the
variables. Multiplying the left side by G−1 and denoting H = G−1F and λ = ω2, Eq. (5.13) becomes

{H− Iλ}Amn = 0 (5.14)

where I is the M ·N side square identity matrix. Since Eq. (5.14) is a set of homogeneous equations,
nontrivial solutions can be obtained only if the determinant of the coefficient matrix is zero, i.e.

|H− Iλ| = 0 (5.15)
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Hence, an eigenvalue problem must be solved. Because matrix dimensions are usually large, the
computation of the matrix terms and the solution of the eigenvalue problem are usually obtained
using a computer program. In other words, this is a semianalytical method.

This method allows one to obtain the frequencies (from the eigenvalues, which are the square of the
angular frequencies) and the modes (from the eigenvectors, which are the weights Amn for each mode
in Eq. (5.11)).

5.4 Damage detection

The technique proposed in this work allows for damage detection to be performed at Level 1 (detection)
and Level 2 (location) of Rytter’s damage identification hierarchy [89]. It is remarkable that no
information about the undamaged plate is necessary, meaning great applicability. The technique is
based on Wavelet Transform combined with the Ritz method. Figure 5.2 shows a block diagram of
the complete damage detection technique. The main advantage of the current method is that it does
not require information on the undamaged plate or higher modes to detect damage.

Frequencies

Plate

Damaged

Approximation

Modes

(Ma)

Eigenvectors

(Amn)
FEM (or experiment)

(fi)

Damaged

Modes

(Md)

CWT

Eigenvalue

problem
D = |W (Ma)−W (Md)|

H matrix

minimization

of (11)

equation (14)

of

Figure 5.2: Block diagram for damage detection based on Ritz method and Wavelet Transform.

Firstly, the first four (main) frequencies (fi) and vibration modes of the damaged plate (Md) are
obtained using the FEM research code FEAP with the element and mesh described in Section 5.2
(85×65 elements, 86×66 nodes).

Second, using the summation in Eq. (5.11) and assuming a set of functions compatible with the
boundary conditions as in Ref. [88], the values Amn that fit the numerical modes are computed using
the Fletcher-Reeves conjugate gradient minimization algorithm [90].

From the eigenvectors Amn and the frequencies (fi), an approximation of the matrix H of Eq. (5.14)
is obtained.

This matrix is an approximation of the H matrix that can be obtained using the Ritz method with
M = N = 2 in Eq. (5.11). Thus, a standard extraction algorithm is used to obtain the frequencies and
vibration modes (Ma). These new vibration modes are an approximation of the original ones, since
only four terms in Eq. (5.11) were used, implying that some information is lost during the process. The
technique presented here assumes that this lost information is mainly related to damage, so these new
modes can therefore be used as the undamaged modes to define a damage index similar to Ref. [77].
Note that different values forM and N can be used by changing the number of frequencies and modes
established initially.
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Finally, to detect the presence of damage, the following positional damage index is defined at all the
points of the mesh (86×66 nodes):

D(x, y) = |W (Ma(x, y))−W (Md(x, y))| (5.16)

where W (X) represents the 2D Continuous Wavelet Transform. In order to perform a good compari-
son, the modes have to be normalised in the same way. In this case a normalization to the maximum
absolute value is applied.

The chosen wavelet function was the Halo Wavelet, also known as isotropic Morlet Wavelet, described
in Ref. [91]. In the frequency domain, this wavelet can be expressed as:

ĝ(k) = exp

(
− (|k| − k0)2

2

)
(5.17)

where k is the frequency vector and k0 is a parameter.

Figure 5.3 shows the Halo Wavelet in both the spatial and frequency domains. We should underline
that the Halo Wavelet is always real. To satisfy the wavelet admissibility condition (k0 > 5.5, see
Ref. [92]), the parameter k0 was chosen as equal to 6. Regarding the scale, it is necessary to consider
that the width of the wavelet function depends on the minimum number of divisions in the axis (in
our case 65, corresponding to the y axis). The optimum scales for damage detection were found to
be the ones allowing placement inside the first and second peaks of a number of elements between 4
(about scale 7) and 6 (about scale 10). The scale we used was equal to 8.5. Wavelet computations
were performed using Matlab R© and the YAWTb toolbox [93]. We should stress that these optimum
scales were independent of the size of the damage.

a) Spatial domain b) Frequency domain

Figure 5.3: Halo Wavelet in Spatial domain (a) and Frequency domain (b).

5.5 Results

5.5.1 Cases analysed

The element explained in Section 5.2 was implemented in the Finite Element Analysis Program FEAP
[67]-[28]. A composite [0/90]3S rectangular plate with dimensions 0.85 × 0.65 m, was studied and
numerically simulated. Two different boundary conditions were implemented: fully clamped and fully
simply supported, the plate being fully clamped if is not specified otherwise. Eight different cases of
a single delamination were considered (see Table 5.1). For six of the cases, the position with respect
to thickness was considered to be between the 6-th and 7-th plies (midplane delamination), and the
remaining two were considered outside of the midplane (one between the 3-rd and 4-th plies, the other
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between 9-th and 10-th). Its position on the plate (top view) was always centered at the coordinates
x = 57 cm and y = 42 cm. Figure 5.4 shows the Finite Element Model and the location of the
delamination for damage case IV. The mesh used for all the computations was 1.00 cm × 1.00 cm.
Modes 1 and 3 were used in all the cases.

For the sake of simplicity, only one delamination was considered in all the analised cases. It is
reasonable to assume that if multiple delaminations exist, damage would be greater and thus more
detectable using the procedure proposed in this paper.

The mechanic properties of the ply were considered to be Ex = 150, Ey = 11.5, Gxy = 5 GPa, ν
= 0.42 and ρ = 1560 kg/m3. The ply thickness was taken to be tp = 0.2 mm. They correspond to a
typical CFRP plate.

Y

X

Figure 5.4: FEM Model. Case IV of damage

Before looking at the results of the new damage detection method proposed in this paper, some
classical mode shapes and FRF are plotted below. The purpose is to show how this new method can
detect damage, even for lower modes, using only the damaged response.

Case Delamination size (m x m) Plies between delamination is located
0 Undamaged
I 0.04 x 0.04 6-th/7-th
II 0.06 x 0.06 6-th/7-th
III 0.08 x 0.08 6-th/7-th
IV 0.10 x 0.10 6-th/7-th
V 0.14 x 0.14 6-th/7-th
VI 0.18 x 0.18 6-th/7-th
VII 0.10 x 0.10 3-rd/4-th
VIII 0.10 x 0.10 9-th/10-th

Table 5.1: Cases of damage analized
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5.5.2 Mode shapes

Mode shapes are frequently used to detect damage, which modifies their configuration, the curvatures
of these mode shapes being commonly used. Figures 5.5 and 5.6 show mode shapes of x-Curvature
for modes 1, 2, 4 and 6. The first Figure is for case I of damage and the second one is for case IV.
As shown, curvatures are indeed able to detect damage. For small cases of damage, more modes
are required, because delamination is not detectable in all of them. On the other hand, Wavelet
Analysis performed on the vertical displacements is capable of detecting the presence of delamination
in every mode. Vertical displacements could be easily taken as measured data from a real structure.
Curvatures are computed directly as the second derivative of the measured displacements, giving, for
thin plate formulations, the exact value. For Higher Order formulations a pseudo-curvature would be
obtained, whose effect in damage detection techniques would be similar to that of thin formulations.

a) Mode 1 b) Mode 2

c) Mode 4 d) Mode 6

Figure 5.5: Mode shapes 1(a), 2 (b), 4 (c) and 6 (d) for x-Curvatures for a plate with case I delamination

5.5.3 FRF Analysis

Another powerful tool is Frequency Response Function (FRF) Analysis. In this case, the information
is normally taken at some points of the structure. With an excitation at coordinates x = 20 cm and
y = 14 cm, FRF from the different simulations at coordinates x = 25 cm and y = 22 cm (S1) and
x = 60 cm and y = 22 cm (S2) were obtained. Here, the vertical displacement was the degree of
freedom used.

Figure 5.7 shows the FRF at positions S1 and S2. Figures a) and c) show the undamaged case and
the damaged cases I, II and III. Figures b) and d) show the undamaged case and the damaged cases
IV, V and VI. Figures a) and b) are for S1, and c) and d) for S2.

From the plots, it can be seen that FRF is a very effective method for detecting delamination, requiring
only the information from some points, minimizing the amount of data to be measured. However,
it requires the use of higher modes and the undamaged response. Even for large delamination sizes,
higher modes are required. This result confirms that delamination is a difficult kind of damage to
detect, using the vibration bending modes, if the information is taken locally.
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a) Mode 1 b) Mode 2

c) Mode 4 d) Mode 6

Figure 5.6: Mode shapes 1 (a), 2 (b), 4 (c) and 6 (d) for x-Curvatures for a plate with case IV delamination

5.5.4 Wavelet Analysis

Figures 5.8 and 5.9 show the positional damage index D(x, y) defined in this paper, calculated for the
plates with damage cases I, II, IV and VI using, respectively, mode 1 and mode 3 for computations.
A square black line delimits the extension of the delamination. It is clear that the damage index D is
larger near the delaminated zone, allowing for its detection. Thus D is a good indicator for damage
location. Results for the two modes are very similar except for damage case VI, where mode 1 provides
a better performance. Other modes were used with similar results, and other scales were used with
poorer results.

It is seen that even for small delamination extensions, the delaminated zone and proximities are clearly
different from the rest of the plate, using only lower modes. This is an advantage with respect to
classical methods such as mode shapes or FRF Analysis. Another important advantage is the fact
that this method does not call for any information about the undamaged plate, and results can be
easily computed from the measured displacements.

5.5.5 Influence of the delamination thickness position

In this Section the results for damage detection in cases VII and VIII are compared with case IV. In
the three cases the delamination has the same extension and it is placed between different plies, as is
described in Table 5.1. Figure 5.10 shows the results of the damage index D(x, y) calculated for these
three cases, using modes 1 and 3. It can be seen that the method provides very similar results for
delaminations with the same extension, no matter where the delamination is placed in the midplane
(case IV) or away from the midplane (cases VII and VIII).
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5.5.6 Influence of boundary conditions

In this Section the influence of the boundary conditions for damage detection is studied. To this end,
the results for a fully clamped plate are compared with the results for a fully simply supported plate,
both for the damage case IV.

Figure 5.11 shows the results of the damage index D(x, y) calculated for both boundary conditions,
using case IV and modes 1 and 3. It can be seen that for mode 1 the method provides very similar
results. On the other hand, for mode 3 some noise appears in the corners when the plate is simply
supported, but the delamination is well located despite this.

5.5.7 Effect of added noise

To study the applicability of the damage index D(x, y) on experimental measures, the numerical
modes Md were modified by the addition of random noise, with the aim of simulating experimental
conditions of modes. That is, the new modes, called noisy modes, were generated by the following
expression for every point in the mesh:

w̃(x, y) = w(x, y) +R× 10Z (5.18)

where R ∈ [−1, 1] is a random number and Z a natural number, w(x, y) being the unnoisy modes.

10
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S1
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S1

0 IV V VI

b)
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c)

0 I II III
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(Hz)

S2

d)

0 IV V VI

Figure 5.7: FRF at locations S1 (a, b) and S2 (c, d) and cases 0, I, II, III (a, c) and 0, IV, V, VI (b, d)

88



5. Modal Analysis of Delaminated Composite Plates using the Finite Element Method and Damage
Detection via combined Ritz/2d-Wavelet Analysis

a) Case I b) Case II

c) Case IV d) Case VI

Figure 5.8: Damage index D(x, y) for damage cases I (a), II (b), IV (c) and VI (d) using mode 1. Horizontal
line: coordinate x; vertical line: coordinate y

a) Case I b) Case II

c) Case IV d) Case VI

Figure 5.9: Damage index D(x, y) for damage cases I (a), II (b), IV (c) and VI (d) using mode 3. Horizontal
line: coordinate x; vertical line: coordinate y

Different tests were made in order to find the maximum natural number Z allowing us to detect and
locate damage. Figures 5.12 and 5.13 show the damage index D(x, y), calculated for the plates with
damage cases I, II, IV and VI using, respectively, noisy modes 1 and 3, with the noise added according
to the Equation (5.18) with Z = −4, this being the maximum value of Z that permits damage to
be detected. It can be seen that, despite the fact that some noise appears in the damage index near
the edges, the delaminations were very well located. This noise is intrinsic to the technique and it
is associated with the fact that only four modes are used in the Ritz series (see Ref. [69]). Greater
values of Z give unsuccessful results for damage location. Thus, to ensure the right damage location,
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a) Case VII b) Case VIII c) Case IV

d) Case VII e) Case VIII f) Case IV

Figure 5.10: Damage index D(x, y) for damage cases VII (a, d), VIII (b, e) and IV (c, f) using mode 1 (a,
b, c) and mode 3 (d, e, f). Horizontal line: coordinate x; vertical line: coordinate y

a) Simply supported b) Clamped

c) Simply supported d) Clamped

Figure 5.11: Damage index D(x, y) for damage case IV when the plate is fully simply supported (a, c)
and fully clamped (b, d) using mode 1 (a, b) and mode 3 (c, d). Horizontal line: coordinate x; vertical line:
coordinate y

sensors and instrumentation system with a sensitivity higher than 10−4 with respect to the maximum
value of the mode should be used.
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a) Case I b) Case II

c) Case IV d) Case VI

Figure 5.12: Damage index D(x, y) for damage cases I (a), II (b), IV (c) and VI (d) using noisy mode 1.
Horizontal line: coordinate x; vertical line: coordinate y

a) Case I b) Case II

c) Case IV d) Case VI

Figure 5.13: Damage index D(x, y) for damage cases I (a), II (b), IV (c) and VI (d) using noisy mode 3.
Horizontal line: coordinate x; vertical line: coordinate y

5.6 Conclusions

This paper presents a new method of delamination detection in CFRP plates. Based on the Ritz
method and the Wavelet Transform, the method allows for the detection of delamination using only
the damaged response. To test the method, numerical simulations were performed. For this purpose,
we developed a novel 4–node quadrilateral ESL finite element, which models a delaminated composite
based on CLT. Given a simple kinematic assumption, its formulation is described for a composite with
multiple delaminations.
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Eight different cases of damage were tested on a [0/90]3S CFRP plate. In order to demonstrate the
advantages of this method, results were compared with those of classical methods including mode
shapes and FRF analysis. The proposed method makes it possible to detect delamination at Level
2 (location) of Rytter’s damage identification hierarchy using the lower modes, thereby making it
advantageous with respect to the classical methods.

The influence of the delamination thickness position and the boundary conditions was studied, showing
that the thickness position barely influences the damage detection, and that when the boundary
conditions are less restrictive (simply supported vs clamped) the proposed technique can present
some limitations (occurrence of noise in the corners). Also, a study adding noise to the simulated
damaged modes was carried out, finding that to ensure the damage detection with experimental data,
sensors and an instrumentation system with sensitivity higher than 10−4 with respect to the maximum
value of the mode should be used.

92



Chapter 6

Conclusions and further works

This Doctoral Thesis pursues several objectives to study composite applications in the field of the
aerospace industry.

Two main blocks comprise this research:

• Developing a composite shell with a novel IGA formulation.

• Studying the effect of delamination on composite plates.

Isogeometric Analysis is a very promising methodology, unifying geometric definition and Finite Ele-
ment Analysis in one tool. This methodology allows us to define complex geometries using NURBS.

Firstly, an isoparametric composite shell has been implemented for a higher-order ESL theory, through
the use of higher-order NURBS, resulting in a good formulation for static and modal analysis.

Although higher-order NURBS present better accuracy than standard finite element ones, the shell is
further improved, in order to avoid locking.

Particularly shear-locking is avoided through the use of a hierarchic discrete difference vector theory,
while curvature-locking is avoided by the use of projection techniques.

The following conclusions and observations can thus be extracted from the first part (Chapters 1 and
2):

• IGA admits complex geometries, without requiring mesh refinements.

• The strain and stress are continuous.

• IGA presents the same numerical issues as the standard finite element method does.

• Isoparametric higher-order NURBS work well for most of the standard problems.

• The proposed locking-free shell presents better results for very thin shells and for high-curvature
ones.

• The proposed locking-free shell presents better results for higher frequencies.

Several benchmark and numerical problems are compared with the IGA ones in order to test the
implemented shell and to proof its efficiency.

In further works, other locking strategies will be performed. The theory will be generalized for a
non-linear regime.
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For the time being, and within the field of Structural Health Monitoring (SHM), two objectives are
achieved.

Firstly, a delaminated composite element was implemented with the standard finite element theory,
to study how dynamic properties were affected by the presence of delamination from a comprehensive
point of view. Mode shape changes, frequency shifts and FRF changes are analized in order to quantify
the influence of delamination. In general, changes tend to be greater as the delamination size grows,
requiring the use of higher order frequencies to detect small delaminations.

Secondly, the experimental validation of this idea was performed with three composite orthotropic
plates [0 90]3S , two of them having internal delamination. Similar behaviour was observed in the
experiments and the simulations, the frequency shifts obtained from the FRF being the variable used
to compare both methods.

The following conclusions can therefore be extracted from the second part (Chapters 3 and 4):

• Mode shape changes are more powerful to identify delamination than frequency shifts.

• The PULSE-System does not introduces relevant noise for different experiments.

• A variance for frequencies in the experiment was set for the studied bandwidth, since the exper-
iment was performed on three different plates.

• Amplitude changes in the FRF were only taken into account if the changes were noticeable.

• The plates were free of in-plane stresses.

• FRF analysis was able to identify delamination. In order to clearly detect small delaminations,
higher frequencies were required.

• The behaviour resulting from theory and experiments was similar.

• Model based methods should be used from a comprehensive point of view.

Finally, an additional contribution from a paper involving the collaboration of this author is provided,
giving the numerical results for some delaminated plates, in order to validate a new damage detection
technique developed by a member of the group.

In future work, the study of Lamb waves on delaminated plates will be performed from a numerical
point of view.
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